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Abstract

Although sparse neural networks have been studied extensively, the focus has been
primarily on accuracy. In this work, we focus instead on network structure, and
analyze three popular algorithms. We first measure performance when structure
persists and weights are reset to a different random initialization, thereby extending
Zhou et al. [20]. This experiment reveals that accuracy can be derived from struc-
ture alone. Second, to measure structural robustness we investigate the sensitivity
of sparse neural networks to further pruning after training, finding a stark contrast
between algorithms. Finally, for a recent dynamic sparsity algorithm we investigate
how early in training the structure emerges. We find that even after one epoch the
structure is mostly determined, allowing us to propose a more efficient algorithm
which does not require dense gradients throughout training. In looking back at
algorithms for sparse neural networks and analyzing their performance from a
different lens, we uncover several interesting properties and promising directions
for future research.

1 Introduction

Sparse networks achieve impressive accuracy while using only a fraction of the parameters [[13]
9, (7,15, 4]. Though earlier work on sparse networks focused primarily on pruning after training,
researchers have recently shown interest in pruning early in training [5} 14,17, /18] or dynamically as
training progresses [2, 19} 3]

Sparse neural networks continue to intrigue researchers for two main reasons. First, pruning neural
networks can vastly reduce storage and computational costs, important steps towards reducing energy
consumption and GreenAl [16]]. Additionally, sparsifying neural networks provides a useful tool for
understanding learning dynamics and other phenomena. For instance, the lottery ticket hypothesis
[S]] conjectures that overparameterized neural networks contain subnetworks which can be trained to
competitive accuracy when their weights are reset to their initialization. These findings may suggest
that SGD seeks out and trains a lucky subnetwork early in training. Morever, in [20}[15] high accuracy
is achieved by sparsifying a randomly initialized neural network with fixed weights.

In this paper we investigate sparse neural networks structures. We are inspired by the analysis of
[20], wherein Zhou et al. carefully analyze which aspects of the Iterative Magnitude Pruning (IMP)
[S]] contribute to the accuracy. We bring a similar tool and perspective to the analysis of network
structure across different algorithms. In addition to IMP we analyze two dynamic sparsity methods:
Discovering Neural Wirings (DNW) [19] and Rigged Lottery Tickets (RigL) [3]], algorithms where
the connectivity changes throughout training. We then ask the following three questions:

1. What role does structure play in a sparse neural network’s performance? As in [20], we
investigate this by using the sparse neural network structure found at the end of training
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and resetting the weights to a different random initialization before retraining. Our findings
match [20] for IMP subnetworks, which perform similarly to random subnetworks when
retrained with new randomly initialized parameters. Surprisingly, we find that this isn’t true
for DNW and RigL subnetworks, which outperform random subnetworks across various
sparsity values.

2. How robust are different network structures? Specifically, we investigate how quickly
accuracy degrades when further pruning networks after training. We conclude that IMP,
DNW, and RigL subnetworks are less sensitive than a random subnetwork when further
pruning by magnitude.

3. In DNW, a dynamic sparsity method, how early in training does the final structure emerge?
We find that surprisingly the structure emerges fairly early in training and leverage these
results to design a more efficient algorithm.

2 Preliminaries and Related Work

We investigate four classes of sparse graphs. For the first class of graphs, which we refer to as a
random graph, we choose a random set of weights to remain zero throughout training. We also
consider Lottery Ticket (LT) [I5] graphs, DNW [19]] graphs, and RigL graphs [3]] which are respectively
produced by the following three algorithms:

1. Iterative Magnitude Pruning (IMP). IMP [5. 6] iteratively sparsifies a neural network in succes-
sive training runs. First a dense network is trained until completion, at which point the bottom p% of
the weights by magnitude are set to 0. The nonzero weights are then reset to their initialization and
the process continues until the requisite sparsity is attained. Although the process is expensive, IMP
produces highly effective sparse neural networks.

2. Discovering Neural Wirings (DNW). As in [2, 3], DNW [[19] maintains sparsity throughout
training. In the forwards pass, DNW selects the top p% of weights by layer to be nonzero. In the
backwards pass, all weights are updated via the straight-through estimator allowing the re-entry of
dead weights.

3. Rigged Lottery (RigL). RigL [3] maintains sparsity throughout training and does not require
dense gradients during most iterations of training. RigL graph structure is static for the majority
of training iterations, and only changes every n iterations up to some stopping iteration 7¢,q. On
those iterations where graph structure is changed, the bottom k parameters are removed from the
network by absolute magnitude. To replace these k lost parameters, the k parameters with the greatest
magnitude gradient are introduced into the network. k decreases as the number of iterations increases,
until T,,,4 is reached.

3 How Does Structure Affect Accuracy?

The four algorithms we investigate find sparse neural graph structures using different methods. These
differences between algorithms might be expected to lead each algorithm to generate graph structures
with unique characteristics. Understanding how much graph structure is responsible for the accuracy
of each of these algorithms, as opposed to the importance of a specific initialization, is important for
understanding the generalizability of the structures they create.

To determine how the four different classes of graphs perform under varying levels of sparsity, we
compare their accuracy at each degree of sparsity when their parameters are reinitialized with multiple
new random seeds. This experiment extends [20], where authors conduct this analysis for LT graphs.

Using ResNet-18 [[10] on CIFAR-10 [12], we find that LT graphs perform similarly to random graphs
when their weights are reset randomly. This corroborates the findings of [20]. Surprisingly, however,
we find that DNW and RigL graphs outperform random graphs, suggesting that their performance
may in part due to a characteristic of their structure which is absent in LT and random graphs. As
illustrated in Figure|l} this performance gap is especially pronounced in the sparse regimes.
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Figure 1: Accuracy Vs. Sparsity. Performance of ResNet-18 on CIFAR-10 when trained with the
structure found by sparsity algorithms but with weights reset randomly. Error bars show standard
deviation of accuracy when graph structures of each type are reinitialized with three random seeds.

4 Sensitivity to Further Pruning

In linear optimization, sensitivity analysis can be used to identify the stability of a solution for
maximizing or minimizing a linear program. When small perturbations to the inequalities defining
a linear program leave the optimal solution unchanged, the optimal solution is said to be stable. In
order to test the robustness of a graph’s structure, we experiment with an analogous metric which
measures the stability of a sparse neural network.

To determine the robustness of each graph type, we introduce an algorithm for sensitivity analysis
on neural graph structures. This sensitivity analysis is performed by further eliminating non-zero
parameters after training and evaluating the performance of the reduced network. We select which
weights to remove both randomly and by order of ascending magnitude, as illustrated in Figure 2}
Our findings indicate that when removing weight by magnitude the performance of random graphs
decreases faster than DNW, LT, and RigL graphs. This suggests that lower magnitude parameters
in LT, DNW and Rigl graphs are less critical. This is partially expected for DNW and RigL, which
continuously swap out the lower magnitude weights. When removing weights randomly, DNW and
LT slightly outperform Rigl. and random graphs, suggesting that there may be more redundancy
within LT and DNW graphs.
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Figure 2: Sensitivity to parameter zeroing for a 90.5% sparse fully connected network on MNIST

where weights are removed in order of ascending magnitude (left) and randomly (right). Error bars
show standard deviation with three random seeds.



S How Early in Dynamic Training Does Structure Emerge?

In order to improve dynamic training algorithms, it is helpful to have tools which monitor how they
modify graph structure as they train. One simple metric which allows us to roughly track graph
evolution during training is to track node in-degrees. By tracking the in-degree of each node in a
layer we are able to gain insight into how networks evolve during training with dynamic algorithms.
Surprisingly, when analysing DNW, we find that the majority of the structural changes happen in
the first epoch, and that the remainder of the structural change is mainly an amplification of the
structure created in the first epoch. Nodes which have higher in-degrees after the first epoch of
training continue to increase the number of connections they have, while those nodes with lower
in-degrees after the first epoch see declines in their importance over the rest of training.
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Figure 3: In-degree evolution throughout training with DNW. The in-degree of a random subsampling
of neurons is shown for a small sparsified fully connected network on MNIST with 90.5% sparsity.
Color is used to show in-degree after one epoch of training, where yellow is a higher in-degree after
the first epoch and blue is a lower in-degree after the first epoch. These results showcase a strong
correlation between in-degree after the first epoch and final in-degree.

For normal DNW training, the gradient is propagated to all parameters with the straight through
estimator [[1], allowing dead weights to resurface. In a very sparse graph, this means that a high
percentage of the computational power is consumed looking for new edges to add to the graph.
However, we have shown in Figure [3] that the final DNW structure is primarily an amplification of the
structure after the first epoch, and therefore much of this searching is superfluous.

Based on these results, we propose a hybrid dynamic/static training method where the structure is
allowed to change in the first k£ epochs using the normal DNW algorithm, and structure is fixed for
the remainder of training. Accordingly we refer to the kth epoch by the freezing epoch. We illustrate
the performance of our hybrid algorithm in Figure[d]
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Figure 4: The effect of the freezing epoch on performance in our hybrid dynamic/static training
method for ResNet-18 on CIFAR-10. Error bars give standard deviation from three random seeds at
each freezing epoch.



We find that, after the first few epochs, further training with DNW yields diminishing returns. This
corroborates our finding that structure is primarily determined within the first few epochs of DNW.
However, if compute is unbounded it is still best to train with DNW to completion. In comparison
to newer dynamic training algorithms including Rigl. and Top-KAST [3}|11]], our modified DNW
algorithm is likely still less computationally efficient for most applications. We believe the more
important finding, however, is that simple introspection into graph evolution during dynamic training
can make improvements to existing algorithms easier to identify.

6 Conclusion

We have taken a retrospective look at sparse neural networks through a different lens. Our findings
offer interesting insight into a growing field which is becoming increasingly practical [8]. We have
shown that in contrast with IMP, structures found by DNW and RigL perform well independently
of initialization. This suggests that there are properties in dynamically generated structures that are
absent in LT and random graphs which are conducive to sparse learning. Moreover we have shown
that random graphs are much more sensitive to changes in connectivity than the other graph types.
Finally, using a simple tool we find that the majority of structural changes in DNW occur in the first
few epochs, leading us towards a more efficient algorithm. More generally, we believe that analyzing
existing algorithms from a variety perspectives is often very useful and underexplored.
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