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Abstract

Researchers have proposed a wide variety of model explanation approaches, but it
remains unclear how most methods are related or when one method is preferable
to another. We examine the literature and find that many methods are based on a
shared principle of explaining by removing—essentially, measuring the impact of
removing sets of features from a model. These methods vary in several respects, so
we develop a framework for removal-based explanations that characterizes each
method along three dimensions: 1) how the method removes features, 2) what
model behavior the method explains, and 3) how the method summarizes each
feature’s influence. Our framework unifies 25 existing methods, including several
of the most widely used approaches (SHAP, LIME, Meaningful Perturbations,
permutation tests). Exposing the fundamental similarities between these meth-
ods empowers users to reason about which tools to use and suggests promising
directions for ongoing model explainability research.

1 Introduction

The proliferation of black-box models has made machine learning (ML) explainability an increasingly
important subject, and researchers have now proposed a wide variety of model explanation approaches
[6, 9, 10, 26, 31, 32, 33, 44, 46, 51]. Despite progress in the field, the relationships and trade-
offs among these methods have not been rigorously investigated, and researchers have not always
formalized their fundamental ideas about how to interpret models [24]. This makes the literature
difficult to navigate and raises questions about whether existing methods relate to human processes
for explaining complex decisions [29, 30].

Here, we present a comprehensive framework that unifies a substantial portion of the model expla-
nation literature. Our framework is based on the observation that many methods can be understood
as simulating feature removal to quantify each feature’s influence on a model. The intuition behind
these methods is similar (depicted in Figure 1), but each one takes a slightly different approach to the
removal operation: some replace features with neutral values [32, 51], others marginalize over a dis-
tribution of values [26, 42], and still others train separate models for each subset of features [23, 44].
These methods also vary in other respects, as we describe below.

We refer to this class of approaches as removal-based explanations and identify 251 existing methods
that rely on the feature removal principle, including several of the most widely used methods (SHAP,
LIME, Meaningful Perturbations, permutation tests). We then develop a framework that shows how
each method arises from various combinations of three choices: 1) how the method removes features
from the model, 2) what model behavior the method analyzes, and 3) how the method summarizes
each feature’s influence on the model. By characterizing each method in terms of three precise

1This total count does not include minor variations on the approaches we identified.
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Figure 1: A unified framework for removal-based explanations. Each method is determined by three
choices: how it removes features, what model behavior it analyzes, and how it summarizes feature
influence.

mathematical choices, we are able to systematize their shared elements and reveal that they rely on
the same fundamental approach—feature removal.

The model explanation field has grown significantly in the past decade, and we take a broader
view of the literature than existing unification theories. Our framework’s flexibility enables us to
establish links between disparate classes of methods (e.g., computer vision-focused methods, global
methods, game-theoretic methods, feature selection methods) and show that the literature is more
interconnected than previously recognized. Exposing these underlying connections potentially raises
questions about the degree of novelty in recent work, but we also believe that each method has the
potential to offer unique advantages, either computationally or conceptually.

Through this work, we hope to empower users to reason more carefully about which tools to use,
and we aim to provide researchers with new theoretical tools to build on in ongoing research. Our
contributions include:

1. We present a framework that unifies 25 existing explanations methods. Our framework for
removal-based explanations integrates classes of methods that were previously considered
disjoint, including local and global approaches as well as feature attribution and feature selection
methods.

2. We develop new mathematical tools to represent different approaches to removing features from
brittle ML models. Subset functions and model extensions provide a common representation
for various feature removal techniques, revealing that this choice is interchangeable between
methods.

3. We generalize numerous explanation methods to express them within our framework, exposing
connections that were not apparent in the original works. In particular, for several approaches
we disentangle the substance of the methods from the approximations that make them practical.

We begin with background on the model explanation problem and a review of prior work (Section 2),
and we then introduce our framework (Section 3). The next several sections examine our framework
in detail by showing how it encompasses existing methods. Section 4 discusses how methods remove
features, Section 5 formalizes the model behaviors analyzed by each method, and Section 6 describes
each method’s approach to summarizing feature influence. Finally, Section 7 concludes and discusses
future research directions.
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2 Background

Here, we introduce the model explanation problem and briefly review existing approaches and related
unification theories.

2.1 Preliminaries

Consider a supervised ML model f that is used to predict a response variable Y ∈ Y using the
input X = (X1, X2, . . . , Xd), where each Xi represents an individual feature, such as a patient’s
age. We use uppercase symbols (e.g., X) to denote random variables and lowercase ones (e.g., x)
to denote their values. We also use X to denote the domain of the full feature vector X and Xi to
denote the domain of each feature Xi. Finally, xS ≡ {xi : i ∈ S} denotes a subset of features for
S ⊆ D ≡ {1, 2, . . . d}, and S̄ ≡ D \ S represents a set’s complement.

ML interpretability broadly aims to provide insight into how models make predictions. This is
particularly important when f is a complex model, such as a neural network or a decision forest. The
most active area of research in the field is local interpretability, which explains individual predictions,
such as an individual patient diagnosis [26, 33, 46]; in contrast, global interpretability explains the
model’s behavior across the entire dataset [6, 10, 31]. Both problems are usually addressed using
feature attribution, where a score is assigned to explain each feature’s influence. However, recent
work has also proposed the strategy of local feature selection [9], and other papers have introduced
methods to isolate sets of relevant features [11, 14, 52].

Whether the aim is local or global interpretability, explaining the inner workings of complex models
is fundamentally difficult, so it is no surprise that researchers keep devising new approaches. Com-
monly cited categories of approaches include perturbation-based methods [26, 51], gradient-based
methods [39, 46], and inherently interpretable models [34, 53]. However, these categories refer to
loose collections of approaches that seldom share a precise mechanism.

Besides the inherently interpretable models, virtually all of these approaches generate explanations by
considering some class of perturbation to the input and using the outcomes to explain each feature’s
influence. Certain methods consider infinitesimal perturbations by calculating gradients [39, 40, 46,
48], but there are many possible perturbations [14, 26, 33, 51]. Our work is based on the observation
that numerous perturbation strategies can be understood as simulating feature removal.

2.2 Related work

Prior work has made solid progress in exposing connections among disparate explanation methods.
Lundberg and Lee proposed the unifying framework of additive feature attribution methods and
showed that LIME, DeepLIFT, LRP and QII are all related to SHAP [5, 12, 26, 33, 37]. Similarly,
Ancona et al. showed that Grad * Input, DeepLIFT, LRP and Integrated Gradients are all under-
standable as modified gradient backpropagations [4, 37, 46]. Most recently, Covert et al. showed
that several global explanation methods can be viewed as additive importance measures, including
permutation tests, Shapley Net Effects, and SAGE [6, 10, 23].

Relative to prior work, the unification we propose is considerably broader but nonetheless precise. As
we describe below, our framework characterizes methods along three dimensions. The choice of how
to remove features has been considered by many works [1, 3, 7, 15, 19, 20, 26, 28, 45]. The choice of
what model behavior to analyze has been considered explicitly by only a few works [10, 25], as has
the choice of how to summarize each feature’s influence based on a set function [10, 12, 16, 26, 44].
To our knowledge, ours is the first work to consider all three dimensions simultaneously and unite
them under a single framework.

Besides the methods that we focus on, there are also methods that do not rely on the feature removal
principle. We direct readers to survey articles for a broader overview of the literature [2, 17].

3 Removal-Based Explanations

We now introduce our framework and briefly describe the methods it unifies.
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Table 1: Choices made by existing removal-based explanations.

METHOD REMOVAL BEHAVIOR SUMMARY

IME (2009) Separate models Prediction Shapley value
IME (2010) Marginalize (uniform) Prediction Shapley value
QII Marginalize (marginals product) Prediction Shapley value
SHAP Marginalize (conditional/marginal) Prediction Shapley value
KernelSHAP Marginalize (marginal) Prediction Shapley value
TreeSHAP Tree distribution Prediction Shapley value
LossSHAP Marginalize (conditional) Prediction loss Shapley value
SAGE Marginalize (conditional) Dataset loss (label) Shapley value
Shapley Net Effects Separate models Dataset loss (label) Shapley value
Shapley Effects Marginalize (conditional) Dataset loss (output) Shapley value
Permutation Test Marginalize (marginal) Dataset loss (label) Remove individual
Conditional Perm. Test Marginalize (conditional) Dataset loss (label) Remove individual
Feature Ablation (LOCO) Separate models Dataset loss (label) Remove individual
Univariate Predictors Separate models Dataset loss (label) Include individual
L2X Missingness during training Prediction mean loss High-value subset
INVASE Missingness during training Prediction mean loss High-value subset
LIME (Images) Default values Prediction Linear model
LIME (Tabular) Marginalize (replacement dist.) Prediction Linear model
PredDiff Marginalize (conditional) Prediction Remove individual
Occlusion Zeros Prediction Remove individual
CXPlain Zeros Prediction loss Remove individual
RISE Zeros Prediction Mean when included
MM Default values Prediction Partitioned subsets
MIR Extend pixel values Prediction High-value subset
MP Blurring Prediction Low-value subset
EP Blurring Prediction High-value subset
FIDO-CA Generative model Prediction High-value subset

3.1 A unified framework

We develop a unified model explanation framework by connecting methods that define a feature’s
influence through the impact of removing it from a model. This perspective encompasses a substantial
portion of the explainability literature: we find that 25 existing methods rely on this mechanism,
including many of the most widely used approaches [6, 14, 26, 33].

These methods all remove groups of features from the model, but, beyond that, they take a diverse
set of approaches. For example, LIME fits a linear model to an interpretable representation of the
input [33], L2X selects the most informative features for a single example [9], and Shapley Effects
examines how much of the model’s variance is explained by each feature [31]. Perhaps surprisingly,
their differences are easy to systematize because each method removes discrete sets of features.

As our main contribution, we introduce a framework that shows how these methods can be specified
using only three choices.

Definition 1. Removal-based explanations are model explanations that quantify the impact of
removing sets of features from the model. These methods are determined by three choices:

1. (Feature removal) How the method removes features from the model (e.g., by setting them to
default values or by marginalizing over a distribution of values)

2. (Model behavior) What model behavior the method analyzes (e.g., the probability of the true
class or the model loss)

3. (Summary technique) How the method summarizes each feature’s impact on the model (e.g.,
by removing a feature individually or by calculating the Shapley values)

This precise yet flexible framework represents each choice as a specific type of mathematical function,
as we show later. The framework unifies disparate explanation methods, and, by unraveling each
method’s choices, offers a step towards a better understanding of the literature by allowing explicit
reasoning about the trade-offs among different approaches.
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Figure 2: Visual depiction of the space of removal-based explanations.

3.2 Overview of existing approaches

We now outline some of our findings, which we present in more detail in the next several sections. In
particular, we preview how existing methods fit into our framework and highlight groups of methods
that appear similar in light of our feature removal perspective.

Table 1 lists the methods unified by our framework (with acronyms introduced in the next section).
These methods represent diverse parts of the interpretability literature, including global methods [6,
31], computer vision-focused methods [14, 32, 51, 52], game-theoretic methods [10, 26, 43] and
feature selection methods [9, 13, 49]. They are all unified by their reliance on feature removal.

Disentangling the details of each method shows that many approaches share one or more of the same
choices. For example, most methods choose to explain individual predictions (the model behavior),
and the most popular summary technique is the Shapley value [36]. These common choices raise
important questions about how different these methods truly are and how their choices are justified.

To highlight similarities among the methods, we visually depict the space of removal-based explana-
tions in Figure 2. Visualizing our framework reveals several regions in the space of methods that are
crowded (e.g., methods that marginalize out removed features with their conditional distribution and
that calculate Shapley values), while certain methods are relatively unique and spatially isolated (e.g.,
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Table 2: Common combinations of choices in existing methods. Check marks (X) indicate choices
that are identical between methods.

REMOVAL BEHAVIOR SUMMARY METHODS

X X IME, QII, SHAP, KernelSHAP, TreeSHAP

X X SHAP, LossSHAP, SAGE, Shapley Effects

X X Occlusion, LIME (images), MM, RISE

X X
Feature ablation (LOCO), permutation tests,

conditional permutation tests

X X
Univariate predictors, feature ablation (LOCO),

Shapley Net Effects

X X SAGE, Shapley Net Effects

X X SAGE, conditional permutation tests

X X Shapley Net Effects, IME (2009)

X X Occlusion, CXPlain

X X Occlusion, PredDiff

X X Conditional permutation tests, PredDiff

X X SHAP, PredDiff

X X MP, EP

X X EP, FIDO-CA

X X X L2X, INVASE

RISE; LIME for tabular data; L2X and INVASE). Empty positions in the grid reveal opportunities to
develop new methods; in fact, every empty position represents a viable new explanation method.

Finally, Table 2 shows groups of methods that differ in only one dimension of the framework. These
methods are neighbors in the space of explanation methods (Figure 2), and it is remarkable how many
instances of neighboring methods exist in the literature. Certain methods even have neighbors along
every dimension of the framework (e.g., SHAP, SAGE, Occlusion, PredDiff, conditional permutation
tests), reflecting how intimately connected the literature has become. The explainability literature is
evolving and maturing, and our perspective provides a new approach for reasoning about the subtle
relationships and trade-offs among existing approaches.

4 Feature Removal

Here, we define the mathematical tools necessary to remove features from ML models and then
examine how existing explanation methods remove features.

4.1 Functions on subsets of features

Most ML models make predictions given a specific set of features X = (X1, . . . , Xd). Mathemat-
ically, these models are functions are of the form f : X 7→ Y , and we use F to denote the set of
all such possible mappings. The principle behind removal-based explanations is to remove certain
features to understand their impact on a model, but since most models require all the features to make
predictions, removing a feature is more complicated than simply not giving the model access to it.

To remove features from a model, or to make predictions given a subset of features, we require a
different mathematical object than f ∈ F . Instead of functions with domain X , we consider functions
with domain X ×P(D), where P(D) denotes the power set ofD ≡ {1, . . . , d}. To ensure invariance
to the held out features, these functions must depend only on a set of features specified by a subset
S ∈ P(D), so we formalize subset functions as follows.
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Definition 2. A subset function is a mapping of the form

F : X × P(D) 7→ Y

that is invariant to the dimensions that are not in the specified subset. That is, we have F (x, S) =
F (x′, S) for all (x, x′, S) such that xS = x′S . We define F (xS) ≡ F (x, S) for convenience because
the held out values xS̄ are not used by F .

A subset function’s invariance property is crucial to ensure that only the specified feature values
determine the function’s output, while guaranteeing that the other feature values do not matter.
Another way of viewing subset functions is that they simulate the presence of missing data. While
we use F to represent standard prediction functions, we use F to denote the set of all possible subset
functions.

We introduce subset functions here because they help conceptualize how different methods remove
features from ML models. Removal-based explanations typically begin with an existing model f ∈ F ,
and in order to quantify each feature’s influence, they must establish a convention for removing it
from the model. A natural approach is to define a subset function F ∈ F based on the original model
f . To formalize this idea, we define a model extension as follows.
Definition 3. An extension of a model f ∈ F is a subset function F ∈ F that agrees with f in the
presence of all features. That is, the model f and its extension F must satisfy

F (x) = f(x) ∀x ∈ X .

As we show next, extending an existing model is the first step towards specifying a removal-based
explanation method.

4.2 Removing features from machine learning models

Existing methods have devised numerous ways to evaluate models while withholding groups of
features. Although certain methods use different terminology to describe their approaches (e.g.,
deleting information, ignoring features, using neutral values, etc.), the goal of these methods is to
measure a feature’s influence through the impact of removing it from the model. Most proposed
techniques can be understood as extensions F ∈ F of an existing model f ∈ F (Definition 3).

We now examine each method’s approach (see Appendix A for more details):

• (Zeros) Occlusion [51], RISE [32] and causal explanations (CXPlain) [35] remove features
simply by setting them to zero:

F (xS) = f(xS , 0). (1)

• (Default values) LIME for image data [33] and the Masking Model method (MM) [11] remove
features by setting them to user-defined default values (e.g., gray pixels for images). Given
default values r ∈ X , these methods calculate

F (xS) = f(xS , rS̄). (2)

This is a generalization of the previous approach, and in some cases features may be given
different default values (e.g., their mean).

• (Missingness during training) Learning to Explain (L2X) [9] and Instance-wise Variable Selec-
tion (INVASE) [49] use a model that has missingness introduced at training time. Removed
features are replaced with zeros so that the model makes the following approximation:

F (xS) = f(xS , 0) ≈ p(Y |XS = xS). (3)

This approach differs from Occlusion and RISE because the model is trained to recognize zeros
as missing values rather than zero-valued features. A model trained with a loss function other
than cross entropy loss would approximate a different quantity (e.g., the conditional expectation
E[Y |XS = xS ] for MSE loss).
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• (Extend pixel values) Minimal image representation (MIR) [52] removes features in images by
extending the values of neighboring pixels. This effect is achieved through a gradient-space
manipulation.

• (Blurring) Meaningful Perturbations (MP) [14] and Extremal Perturbations (EP) [13] remove
features from images by blurring them with a Gaussian kernel. This approach is not an extension
of f because the blurred image retains dependence on the removed features. Blurring fails to
remove large, low frequency objects (e.g., mountains), but it provides an approximate way to
remove information from images.

• (Generative model) FIDO-CA [7] removes feature by replacing them with a sample from a
conditional generative model (e.g. [50]). The held out features are drawn from a generative
model represented by pG(XS̄ |XS), or x̃S̄ ∼ pG(XS̄ |XS) and predictions are made as follows:

F (xS) = f(xS , x̃S̄). (4)

• (Marginalize with conditional) SHAP [26], LossSHAP [25] and SAGE [10] present a strat-
egy for removing features by marginalizing them out using their conditional distribution
p(XS̄ | XS = xS):

F (xS) = E
[
f(X) | XS = xS

]
. (5)

This approach is computationally challenging in practice, but recent work tries to achieve
close approximations [1, 15]. Shapley Effects [31] implicitly uses this convention to analyze
function sensitivity, while conditional permutation tests [42] and Prediction Difference Analysis
(PredDiff) [54] do so to remove individual features.

• (Marginalize with marginal) KernelSHAP (a practical implementation of SHAP) [26] removes
features by marginalizing them out using their joint marginal distribution p(XS̄):

F (xS) = E
[
f(xS , XS̄)

]
. (6)

This is the default behavior in SHAP’s implementation,2 and recent work discusses the benefits
of this approach [20]. Permutation tests [6] use this approach to remove individual features
from a model.

• (Marginalize with product of marginals) Quantitative Input Influence (QII) [12] removes held
out features by marginalizing them out using the product of the marginal distributions p(Xi):

F (xS) = E∏
i∈D p(Xi)

[
f(xS , XS̄)

]
. (7)

• (Marginalize with uniform) The updated version of the Interactions Method for Explanation
(IME) [43] removes features by marginalizing them out with a uniform distribution over the
feature space. If we let ui(Xi) denote a uniform distribution over Xi (with extremal values
defining the boundaries for continuous features), then features are removed as follows:

F (xS) = E∏
i∈D ui(Xi)

[
f(xS , XS̄)

]
. (8)

• (Marginalize with replacement distributions) LIME for tabular data replaces features with
independent draws from replacement distributions (our term), each of which depends on the
original feature values. When a featureXi with value xi is removed, discrete features are drawn
from the distribution p(Xi | Xi 6= xi); when quantization is used for continuous features
(LIME’s default behavior3), continuous features are simulated by first generating a different
quantile and then simulating from a truncated normal distribution within that bin. If we denote
each feature’s replacement distribution given the original value xi as qxi

(Xi), then LIME for
tabular data removes features as follows:

F (x, S) = E∏
i∈D qxi

(Xi)

[
f(xS , XS̄)

]
. (9)

Although this function F agrees with f given all features, it is not an extension because it does
not satisfy the invariance property for subset functions.

2https://github.com/slundberg/shap
3https://github.com/marcotcr/lime
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• (Tree distribution) Dependent TreeSHAP [25] removes features using the distribution induced
by the model, which roughly approximates the conditional distribution. When splits for
removed features are encountered in the model’s trees, TreeSHAP averages predictions from
the multiple paths in proportion to how often the dataset follows each path.

• (Separate models) Shapley Net Effects [23] and the original version of IME [44] are not based
on a single model f but rather on separate models trained for each subset, which we denote as
{fS : S ⊆ D}. The prediction for a subset of features is given by that subset’s model:

F (xS) = fS(xS). (10)

Although this approach is technically an extension of the model fD trained with all features,
its predictions given subsets of features are not based on fD. Similarly, feature ablation, also
known as leave-one-covariate-out (LOCO) [22], trains models to remove individual features,
and the univariate predictors approach (used mainly for feature selection) uses models trained
with individual features [18].

Most of these approaches are extensions of an existing model f , so our formalisms provide useful
tools for understanding how removal-based explanations remove features from models. However,
consider two exceptions: the blurring technique (MP and EP) and LIME’s approach with tabular data.
Both provide functions of the form F : X × P(D) 7→ Y that agree with f given all features, but that
still exhibit dependence on removed features. Based on our mathematical characterization of subset
functions and their invariance to held out features, we argue that these two approaches do not fully
remove features from the model. We conclude that the first dimension of our framework amounts to
choosing an extension F ∈ F of the model f ∈ F .

5 Explaining Different Model Behaviors

Removal-based explanations all aim to demonstrate how a model works, but they can do so by
analyzing a variety of model behaviors. We now consider the various choices of target quantities to
observe as different features are withheld from the model.

The feature removal principle is flexible enough to explain virtually any function. For example,
methods can explain a model’s prediction, a model’s loss function, a hidden layer in a neural network,
or any node in a computation graph. In fact, removal-based explanations need not be restricted to the
ML context: any function that accommodates missing inputs can be explained via feature removal
by examining either its output or some function of its output as groups of inputs are removed. This
perspective shows the broad potential applications for removal-based explanations.

However, since our focus is the ML context, we proceed by examining how existing methods
work. Each method’s target quantity can be understood as a function of the model output, which
is represented by a subset function F (xS). Many methods explain the model output or a simple
function of the output, such as the log-odds ratio. Other methods take into account a measure of the
model’s loss, for either an individual input or the entire dataset. Ultimately, as we show below, each
method generates explanations based on a set function of the form

u : P(D) 7→ R,

which represents a value associated with each subset of features S ⊆ D. This set function represents
the model behavior that a method is designed to explain.

We now examine the specific choices made by existing methods (see Appendix A for further details
on each method). The various model behaviors that methods analyze, and their corresponding set
functions, include:

• (Prediction) Occlusion, RISE, PredDiff, MP, EP, MM, FIDO-CA, MIR, LIME, SHAP (including
KernelSHAP and TreeSHAP), IME and QII all analyze a model’s prediction for an individual
input x ∈ X :

vx(S) = F (xS). (11)
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These methods quantify how holding out different features makes an individual prediction
either higher or lower. For multi-class classification models, methods often use a single output
that corresponds to the class of interest, and they can also apply a simple function to the model’s
output (for example, using the log-odds ratio rather than classification probability).

• (Prediction loss) LossSHAP and CXPlain take into account the true label y for an input x and
calculate the prediction loss using a loss function `:

vxy(S) = −`
(
F (xS), y

)
. (12)

By incorporating label information, these methods quantify whether certain features make the
prediction more or less correct. The minus sign is necessary to give the set function a higher
value when more informative features are included.

• (Prediction mean loss) L2X and INVASE consider the expected loss for a given input x
according to the label’s conditional distribution p(Y |X = x):

wx(S) = −Ep(Y |X=x)

[
`
(
F (xS), Y

)]
. (13)

By averaging the loss across the label’s distribution, these methods highlight features that
correctly predict what could have occurred, on average.

• (Dataset loss w.r.t. label) Shapley Net Effects, SAGE, feature ablation (LOCO), permutation
tests and univariate predictors consider the expected loss across the entire dataset:

v(S) = −EXY
[
`
(
F (XS), Y

)]
. (14)

These methods quantify how much the model’s performance degrades when different features
are removed. This set function can also be viewed as the predictive power derived from sets
of features [10]. Recent work has proposed a SHAP value aggregation scheme that can be
considered a special case of this approach [15].

• (Dataset loss w.r.t. output) Shapley Effects considers the expected loss with respect to the full
model output:

w(S) = −EX
[
`
(
F (XS), F (X)

)]
. (15)

Though related to the previous approach [10], Shapley Effects focuses on each feature’s
influence on the model output rather than on the model performance.

Each set function serves a distinct purpose in exposing a model’s dependence on different features.
The first three approaches listed above analyze the model’s behavior for individual predictions (local
explanations); the last two take into account the model’s behavior across the entire dataset (global
explanations). Although their aims differ, these set functions are all in fact related. Each builds upon
the previous ones by accounting for either the loss or data distribution, and their relationships can be
summarized as follows:

vxy(S) = `
(
vx(S), y

)
(16)

wx(S) = Ep(Y |X=x)

[
vxY (S)

]
(17)

v(S) = EXY
[
vXY (S)

]
= EX

[
wX(S)

]
(18)

w(S) = EX
[
`
(
vX(S), vX(D)

)]
(19)

These relationships show that explanations based on one set function are in some cases related to
explanations based on another. For example, Covert et al. showed that SAGE explanations are the
expectation of explanations provided by LossSHAP [10]—a relationship reflected in Eq. 18.

Understanding these connections is possible only because our framework disentangles each method’s
choices rather than viewing each method as a monolithic algorithm. We conclude by reiterating that
removal-based explanations can explain virtually any function, and that choosing what to explain
amounts to selecting a set function u : P(D) 7→ R to represent the model’s dependence on different
sets of features.
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6 Summarizing Feature Influence

The third choice for removal-based explanations is how to summarize each feature’s influence on
the model. We examine the various summarization techniques and then discuss their computational
complexity and approximation approaches.

6.1 Explaining set functions

The set functions we used to represent a model’s dependence on different features (Section 5) are
complicated mathematical objects that are difficult to communicate fully due to the exponential
number of feature subsets and underlying feature interactions. Removal-based explanations confront
this challenge by providing users with a concise summary of each feature’s influence.

We distinguish between two main types of summarization approaches: feature attributions and
feature selections. Many methods provide explanations in the form of feature attributions, which
are numerical scores ai ∈ R given to each feature i = 1, . . . , d. If we use U to denote the set of
all functions u : P(D) 7→ R, then we can represent feature attributions as mappings of the form
E : U 7→ Rd, which we refer to as explanation mappings. Other methods take the alternative
approach of summarizing set functions with a set S∗ ⊆ D of the most influential features. We
represent these feature selection summaries as explanation mappings of the form E : U 7→ P(D).
Both approaches provide users with simple summaries of a feature’s contribution to the set function.

We now consider the specific choices made by each method (see Appendix A for further details).
For simplicity, we let u denote the set function each method analyzes. Surveying the various
removal-based explanation methods, the techniques for summarizing each feature’s influence include:

• (Remove individual) Occlusion, PredDiff, CXPlain, permutation tests and feature ablation
(LOCO) calculate the impact of removing a single feature from the set of all features, resulting
in the following attribution values:

ai = u(D)− u(D \ {i}). (20)

Occlusion, PredDiff and CXPlain can also be applied with groups of features in image contexts.
• (Include individual) The univariate predictors approach calculates the impact of including

individual features, resulting in the following attribution values:

ai = u({i})− u({}). (21)

This is essentially the reverse of the previous approach: while that approach removes individual
features from the complete set, this one adds individual features to the empty set.

• (Linear model) LIME fits a regularized weighted linear model to a dataset of perturbed examples.
In the limit of an infinitely large dataset, this process approximates the following attribution
values:

a1, . . . , ad = arg min
b0,...,bd

∑
S⊆D

π(S)
(
b0 +

∑
i∈S

bi − u(S)
)2

+ Ω(b1, . . . , bd). (22)

In this problem, π represents a weighting kernel and Ω is a regularization function that is often
set to the `1 penalty to encourage sparse attributions [47]. Since this summary is based on an
additive model, the learned coefficients (a1, . . . , ad) represent values associated with including
each feature.

• (Mean when included) RISE determines feature attributions by sampling many subsets S ⊆ D
and then calculating the mean value when a feature is included. Denoting the distribution of
subsets as p(S) and the conditional distribution as p(S | i ∈ S), the attribution values are
defined as

ai = Ep(S|i∈S)

[
u(S)

]
. (23)

In practice, RISE samples the subsets S ⊆ D by removing each feature i independently with
probability p, using p = 0.5 in the original experiments [32].

11



• (Shapley value) Shapley Net Effects, IME, Shapley Effects, QII, SHAP (including KernelSHAP,
TreeSHAP and LossSHAP) and SAGE all calculate feature attribution values using the Shapley
value, which we denote as ai = φi(u). Shapley values are the only attributions that satisfy a
number of desirable properties [36].

• (Low-value subset) MP selects a small set of features S∗ that can be removed to give the set
function a low value. It does so by solving the following optimization problem:

S∗ = arg min
S

u(D \ S) + λ|S|. (24)

In practice, MP uses additional regularizers and solves a relaxed version of this problem (see
Section 6.2).

• (High-value subset) MIR solves an optimization problem to select a small set of features S∗
that alone can give the set function a high value. For a user-defined minimum value t, the
problem is given by:

S∗ = arg min
S

|S| s.t. u(S) ≥ t. (25)

L2X and EP solve a similar problem but switch the terms in the constraint and optimization
objective. For a user-defined subset size k, the optimization problem is given by:

S∗ = arg max
S

u(S) s.t. |S| = k. (26)

Finally, INVASE and FIDO-CA solve a regularized version of the problem with a parameter
λ > 0 controlling the trade-off between the subset value and subset size:

S∗ = arg max
S

u(S)− λ|S|. (27)

• (Partitioned subsets) MM solves an optimization problem to partition the features into S∗ and
D \ S∗ while maximizing the difference in the set function’s values. This approach is based
on the idea that removing features to find a low-value subset (as in MP) and retaining features
to get a high-value subset (as in MIR, L2X, EP, INVASE and FIDO-CA) are both reasonable
approaches for identifying influential features. The problem is given by:

S∗ = arg max
S

u(S)− λu(D \ S)− γ|S|. (28)

In practice, MM incorporates regularizers and monotonic link functions to enable a more
flexible trade-off between u(S) and u(D \ S) (see Appendix A).

As this discussion shows, every removal-based explanation generates summaries of each feature’s
influence on the underlying set function. In general, a model’s dependencies are too complex to
communicate fully, so explanations must provide users with a concise summary instead. As noted,
most methods we discuss generate feature attributions, but several others generate explanations by
selecting the most important features. These feature selection explanations are essentially coarse
attributions that assign binary importance rather than a real number.

Interestingly, if the high-value subset optimization problems solved by MIR, L2X, EP, INVASE
and FIDO-CA were applied to the set function that represents the dataset loss (Eq. 18), they would
resemble conventional global feature selection problems [18]. The problem in Eq. 26 determines
the set of k features with maximum predictive power, the problem in Eq. 25 determines the smallest
possible set of features that achieve the performance represented by t, and the problem in Eq. 27 uses
a parameter λ to control the trade-off. Though not generally viewed as a model explanation approach,
global feature selection serves an identical purpose of identifying highly predictive features.

We conclude by reiterating that the third dimension of our framework amounts to a choice of
explanation mapping, which takes the form E : U 7→ Rd for feature attribution or E : U 7→ P(D) for
feature selection. Our discussion so far has shown that removal-based explanations can be specified
using three precise mathematical choices, as depicted in Figure 3. These methods, which are often
presented in ways that make their connections difficult to discern, are constructed in a remarkably
similar fashion.
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Figure 3: Removal-based explanations are specified by three precise mathematical choices: a subset
function F ∈ F, a set function u ∈ U , and an explanation mapping E (for feature attribution or
selection).

6.2 Complexity and approximations

Showing how certain explanation methods fit into our framework requires distinguishing between
their substance and the approximations that make them practical. Our presentation of these methods
deviates from the original papers, which often focus on details of a method’s implementation. We
now bridge the gap by describing these methods’ significant computational complexity and the
approximations they use out of necessity.

The challenge with most summarization techniques described above is that they require calculating
the underlying set function’s value u(S) for many subsets of features. In fact, without making any
simplifying assumptions about the model or data distribution, several techniques must examine all 2d

subsets of features. This includes the Shapley value, RISE’s summary technique and LIME’s linear
model. Finding exact solutions to several of the optimization problems (MP, MIR, MM, INVASE,
FIDO-CA) also requires examining all subsets of features, and solving the constrained optimization
problem (EP, L2X) for k features requires examining

(
d
k

)
subsets, or 2dd−

1
2 subsets in the worst

case.4

The only approaches with lower computational complexity are those that remove individual features
(Occlusion, PredDiff, CXPlain, permutation tests, feature ablation) or include individual features
(univariate predictors). These require only one subset per feature, or d total feature subsets.

Many summarization techniques have superpolynomial complexity in d, making them intractable
for large numbers of features. However, these methods work in practice due to fast approximation
approaches, and in some cases methods have even been devised to generate explanations in real-time.
Strategies that yield fast approximations include:

• Attribution values that are the expectation of a random variable can be estimated using Monte
Carlo approximations. IME [43], Shapley Effects [41] and SAGE [10] use sampling strategies
to approximate Shapley values, and RISE also estimates its attributions via sampling [32].

• KernelSHAP and LIME are both based on linear regression models fitted to datasets containing
an exponential number of datapoints. In practice, these techniques fit models to smaller sampled
datasets, which means optimizing an approximate version of their objective function.

• TreeSHAP calculates Shapley values in polynomial time using a dynamic programming al-
gorithm that exploits the structure of tree-based models. Similarly, L-Shapley and C-Shapley
exploit the properties of models for structured data to provide fast Shapley value approxima-
tions [8].

• Several of the feature selection methods (MP, L2X, EP, MM, FIDO-CA) solve continuous
relaxations of their discrete optimization problems. While these optimization problems could
be solved by representing the set of features S ⊆ D as a mask m ∈ {0, 1}d, these methods
instead use a mask variable of the form m ∈ [0, 1]d. When these methods incorporate a penalty
on the subset size |S|, they often use the convex relaxation ||m||1.

4This can be seen by applying Stirling’s approximation to
(

d
d/2

)
as d becomes large.
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• One feature selection method (MIR) uses a greedy optimization algorithm. MIR determines a
set of influential features S ⊆ D by iteratively removing groups of features that do not reduce
the predicted probability for the correct class.

• One feature attribution method (CXPlain) and three feature selection methods (L2X, INVASE,
MM) generate real-time explanations by learning separate explainer models. CXPlain learns
an explainer model using a dataset consisting of manually calculated explanations, which
removes the need to iterate over each feature after training. L2X learns a model that outputs
a set of features (represented by a k-hot vector) and INVASE learns a similar selector model
that can output an arbitrary number of features; similarly, MM learns a model that outputs
masks of the form m ∈ [0, 1]d for images. These techniques can be viewed as amortized
optimization approaches [38] because they learn models that output approximate solutions in a
single forward pass (similar to amortized inference [21]).

In conclusion, many methods provide efficient explanations despite using summarization techniques
that are inherently intractable. Each approximation significantly speeds up computation relative to a
brute-force calculation, but we predict that more approaches could be made to run in real-time by
learning explainer models, as in the MM, L2X, INVASE and CXPlain approaches [9, 11, 35, 49].

7 Discussion

In this work, we developed a unified framework that characterizes a significant portion of the model
explanation literature (25 existing methods). Removal-based explanations have a great degree of
flexibility, and we systematized their differences by showing that each method is specified by three
precise mathematical choices:

1. How the method removes features. Each method specifies a subset function F ∈ F to make
predictions with subsets of features, often based on an existing model f ∈ F .

2. What model behavior the method analyzes. Each method implicitly relies on a set function
u : P(D) 7→ R to represent the model’s dependence on different groups of features. The set
function describes the model’s behavior either for an individual prediction or across the entire
dataset.

3. How the method summarizes each feature’s influence. Methods generate explanations that
provide a concise summary of each feature’s contribution to the set function u ∈ U . Mappings
of the form E : U 7→ Rd generate feature attribution explanations, and mappings of the form
E : U 7→ P(D) generate feature selection explanations.

The growing interest in black-box ML models has spurred a remarkable amount of model explanation
research, and in the past decade we have seen a number of publications proposing innovative new
methods. However, as the field has matured we have also seen a growing number of unifying
theories that reveal underlying similarities and implicit relationships [4, 10, 26]. Our framework
for removal-based explanations is perhaps the broadest unifying theory yet, and it bridges the gap
between disparate parts of the explainability literature.

An improved understanding of the field presents new opportunities for both explainability users and
researchers. For users, we hope that our framework will allow for more explicit reasoning about
the trade-offs between available explanation tools. The unique advantages of different methods are
difficult to understand when they are viewed as monolithic algorithms, but disentangling their choices
makes it simpler to reason about their strengths and weaknesses.

For researchers, our framework offers several promising directions for future work. We identify three
key areas that can be explored to better understand the trade-offs between different removal-based
explanations:

• Several of the methods characterized by our framework can be interpreted using ideas from in-
formation theory [9, 10]. We suspect that other methods can be understood with an information-
theoretic perspective and that this may shed light on whether there are theoretically justified
choices for each dimension of our framework.

• As we showed in Section 5, every removal-based explanation is based on an underlying set
function that represents the model’s behavior. Set functions can be viewed as cooperative
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games, and we suspect that methods besides those that use Shapley values [10, 12, 26, 31, 44]
can be related to techniques from cooperative game theory.

• Finally, it is remarkable that so many researchers have developed, with some degree of inde-
pendence, explanation methods based on the same feature removal principle. We speculate
that cognitive psychology may shed light on why this represents a natural approach to ex-
plaining complex decision processes. This would be impactful for the field because, as recent
work has pointed out, explainability research is surprisingly disconnected from the social
sciences [29, 30].

In conclusion, as the field evolves and the number of removal-based explanations continues to grow,
we hope that our framework can serve as a foundation upon which future research can build.

A Method Details

Here, we provide additional details about some of the explanation methods discussed in the main text.
In several cases, we presented generalized versions of methods that deviated from their explanations
in the original papers.

A.1 Meaningful Perturbations (MP)

Meaningful Perturbations [14] considers multiple ways of deleting information from an input image,
and the approach it recommends is a blurring operation. Given a mask m ∈ [0, 1]d, MP uses a
function Φ(x,m) to denote the modified input and suggests that the mask may be used to 1) set
pixels to a constant value, 2) replace them with Gaussian noise, or 3) blur the image. In the blurring
approach, each pixel xi is blurred separately using a Gaussian kernel with standard deviation given
by σ ·mi (for a user specified σ > 0).

To prevent adversarial solutions, MP incorporates a total variation norm on the mask, upsamples it
from a low-resolution version, and uses a random jitter on the image during optimization. Additionally,
MP uses a continuous mask m ∈ [0, 1]d in place of a binary mask {0, 1}d and the `1 penalty on the
mask in place of the `0 penalty. Although MP’s optimization tricks are key to providing visually
compelling explanations, our presentation focuses on the most essential part of the optimization
objective, which is reducing the classification probability while blurring only a small part of the
image (Eq. 24).

A.2 Extremal Perturbations (EP)

Extremal Perturbations [13] is an extension of MP with several modifications. The first is switching
the objective from a “removal game” to a “preservation game,” which means learning a mask that
retains rather than removes the salient information. The second is replacing the penalty on the subset
size (or the mask norm) with a constraint. In practice, the constraint is enforced using a penalty, but
the authors argue that it should still be viewed as a constraint due to the use of a large regularization
parameter.

EP uses the same blurring operation as MP and introduces new tricks to ensure a smooth mask, but
our presentation focuses on the most important part of the optimization problem, which is maximizing
the classification probability while blurring a fixed portion of the image (Eq. 26).

A.3 FIDO-CA

FIDO-CA [7] is similar to EP but it replaces the blurring operation with features drawn from a gener-
ative model. The generative model pG can condition on arbitrary subsets of features, and although its
samples are non-deterministic, FIDO-CA achieves strong results using a single sample. The authors
consider multiple generative models but recommend a generative adversarial network (GAN) that
uses contextual attention [50]. The optimization objective is based on the same “preservation game”
as EP, and the authors use the Concrete reparameterization trick [27] for optimization.
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A.4 Minimal Image Representation (MIR)

The Minimal Image Representation approach [52] removes information from an image to determine
which regions are salient for the desired class. MIR works by creating a segmentation of edges and
regions and iteratively removing segments from the image (selecting those that least decrease the
classification probability) until the remaining image is incorrectly classified. We view this as a greedy
approach for solving the constrained optimization problem

min
S
|S| s.t. u(S) ≥ t,

where u(S) represents the prediction with the specified subset of features and t represents the
minimum allowable classification probability. Our presentation of MIR in the main text focuses on
this view of the optimization objective rather than the specific greedy algorithm MIR uses (Eq. 25).

A.5 Masking Model (MM)

The Masking Model approach [11] observes that removing salient information (while preserving
irrelevant information) and removing irrelevant information (while preserving salient information)
are both reasonable approaches to understanding image classifiers. The authors refer to these tasks as
discovering the smallest destroying region (SDR) and smallest sufficient region (SSR).

The authors adopt notation similar to MP [14], using Φ(x,m) to denote the transformation to the input
given a mask m ∈ [0, 1]d. For an input x ∈ X , the authors aim to solve the following optimization
problem:

min
m

λ1TV(m) + λ2||m||1 − log f
(
Φ(x,m)

)
+ λ3f

(
Φ(x, 1−m)

)λ4
.

The TV (total variation) and `1 penalty terms are both similar to MP and respectively encourage
smoothness and sparsity in the mask. Unlike MP, MM learns a global explainer model that outputs
approximate solutions to this problem in a single forward pass. In the main text, we provide a
simplified presentation of the problem that does not include the logarithm in the third term or the
exponent in the fourth term (Eq. 28). We view these as monotonic link functions that provide a more
complex trade-off between the objectives but that are not necessary for finding informative solutions.

A.6 Learning to Explain (L2X)

The first theorem of the L2X paper [9] says that the explanation they seek is the distribution that
optimizes the following objective:

ε∗(x) = arg min
|S|=k

−E
[

log p(Y | XS = xS) | X = x
]
.

If we replace the conditional probability with a subset function F (xS) = p(Y |XS = xS) and allow
for loss functions other than cross entropy, then we recover the version of this problem that we present
in the main text. The L2X paper focuses on classification problems and an interpretation of their
approach in terms of mutual information maximization; for a regression task evaluated with MSE
loss, the approach could be interpreted analogously as performing conditional variance minimization.

A.7 Instance-wise Variable Selection (INVASE)

The INVASE method [49] is very similar to L2X, but it parameterizes the selector model differently.
Rather than constraining the explanations to contain exactly k features, INVASE generates a set of
features from a factorized Bernoulli distribution conditioned on the input x ∈ X , using a regularization
parameter λ > 0 to control the trade-off between the number of features and the expected value of the
loss function. Instead of optimizing the selector model with reparameterization gradients, INVASE is
learned using an actor-critic approach.
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A.8 Prediction Difference Analysis (PredDiff)

Prediction Difference Analysis [54] removes individual features (or groups of features) and analyzes
the difference in a model’s prediction. Removed pixels are imputed by conditioning on their bordering
pixels, which approximates sampling from the full conditional distribution p(XS̄ |XS). Rather than
measuring the prediction difference directly, the authors use attribution scores based on the log-odds
ratio:

ai = log
F (x)

1− F (x)
− log

F (xD\{i})

1− F (xD\{i})
.

We view this as another way of analyzing the difference in the model output for an individual
prediction.

A.9 Causal Explanations (CXPlain)

CXPlain removes single features (or groups of features) for individual inputs and measures the change
in the loss function [35]. The authors propose calculating the attribution values

ai(x) = `
(
F (xD\{i}), y

)
− `
(
F (x, y)

)
and then computing the normalized values

wi(x) =
ai(x)∑d
j=1 aj(x)

.

The normalization step enables the use of a learning objective based on Kullback-Leibler divergence
for the explainer model, which is ultimately used to calculate attribution values in a single forward
pass. The authors explain that this approach is based on a “causal objective,” but CXPlain is causal in
the same sense as every other method described in our work.

A.10 Randomized Input Sampling for Explanation (RISE)

The RISE method [32] begins by generating a large number of randomly sampled binary masks. In
practice, the masks are sampled by dropping features from a low-resolution mask independently with
probability p, upsampling to get an image-sized mask, and then applying a random jitter. Due to the
upsampling, the masks have values m ∈ [0, 1]d rather than m ∈ {0, 1}d.

The mask generation process induces a distribution over the masks, which we denote as p(m). The
method then uses the randomly generated masks to obtain a Monte Carlo estimate of the following
attribution values:

ai =
1

E[Mi]
Ep(M)

[
f(x�M) ·Mi

]
.

If we ignore the upsampling step that creates continuous mask values, we see that these attribution
values are the mean prediction when a given pixel is included:

ai =
1

E[Mi]
Ep(M)

[
f(x�M) ·Mi

]
=

∑
m∈{0,1}d

f(x�m) ·mi ·
p(m)

E[Mi]

= Ep(M |Mi=1)

[
f(x�M)

]
.
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A.11 Interactions Methods for Explanations (IME)

IME was presented in two separate papers [43, 44]. In the original version, the authors recommended
training a separate model for each subset of features. In the second version, the authors proposed the
more efficient approach of marginalizing out the removed features from a single model f .

The latter paper is ambiguous about the specific distribution used to marginalize out held out features
[43]. Lundberg and Lee [26] view that features are marginalized out using their distribution from
the training dataset (i.e., the marginal distribution). In contrast, Merrick and Taly [28] view IME as
marginalizing out features using a uniform distribution. Upon a close reading of the paper, we opt for
the uniform interpretation, but the specific interpretation of IME’s choice of distribution does not
impact any of our conclusions.

A.12 TreeSHAP

TreeSHAP uses a unique approach to handle held out features in tree-based models [25]. It accounts
for missing features using the distribution induced by the underlying trees, and, since it exhibits no
dependence on the held out features, it is a valid extension of the original model. However, it cannot
be viewed as marginalizing out features using a simple distribution.

Given a subset of features, TreeSHAP makes a prediction separately for each tree and then combines
each tree’s prediction in the standard fashion. But when a split for an unknown feature is encountered,
TreeSHAP averages predictions over the multiple paths in proportion to how often the dataset follows
each path. This is similar but not identical to the conditional distribution because each time this
averaging step is performed, TreeSHAP conditions only on coarse information about the features that
preceded the split.

A.13 Shapley Net Effects

Shapley Net Effects was originally proposed for linear models that use MSE loss, but we generalize
the method to arbitrary model classes and arbitrary loss functions. Unfortunately, Shapley Net Effects
quickly becomes impractical with large numbers of features or non-linear models.

A.14 Shapley Effects

Shapley Effects analyzes a variance-based measure of a function’s sensitivity to its inputs, with the
goal of discovering which features are responsible for the greatest variance reduction in the model
output [31]. The cooperative game described in the paper is:

u(S) = Var
(
E
[
f(X) | XS

])
.

We present a generalized version to cast this method in our framework. In the appendix of Covert et
al. [10], it was shown that this game is equal to:

u(S) = Var
(
E
[
f(X) | XS

])
= Var

(
f(X)

)
− E

[
Var
(
f(X) | XS

)]
= c− E

[
`
(
E
[
f(X) | XS

]
, f(X)

)]
= c− E

[
`
(
F (XS), f(X)

)]
︸ ︷︷ ︸

Dataset loss w.r.t. output

.

This derivation assumes that the loss function ` is MSE and that the subset function F is F (xS) =
E[f(X) | XS = xS ]. Rather than the original formulation, we present a cooperative game that is
equivalent up to a constant value and that provides flexibility in the choice of loss function:

w(S) = −E
[
`
(
F (XS), f(X)

)]
.
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