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Abstract

As machine learning and algorithmic decision making systems are increasingly be-
ing leveraged in high-stakes human-in-the-loop settings, there is a pressing need
to understand the rationale of their predictions. Researchers have responded to
this need with explainable AI (XAI), but often proclaim interpretability axiomati-
cally without evaluation. When these systems are evaluated, they are often tested
through offline simulations with proxy metrics of interpretability (such as model
complexity). We empirically evaluate the veracity of three common interpretabil-
ity assumptions through a large scale human-subjects experiment with a simple
“placebo explanation” control. We find that feature attribution explanations pro-
vide marginal utility in our task for a human decision maker and in certain cases
result in worse decisions due to cognitive and contextual confounders. This result
challenges the assumed universal benefit of applying these methods and we hope
this work will underscore the importance of human evaluation in XAI research.
Supplemental materials—including anonymized data from the experiment, code
to replicate the study, an interactive demo of the experiment, and the models used
in the analysis—can be found at: https://doi.pizza/challenging-xai.

1 Introduction

With algorithmic and autonomous systems becoming more ubiquitous in everyday life, there has
been a new interest [34] in understanding users’ perceptions [48] of these systems, as well as the
behavior [63] of these systems in the human context in which they are deployed [3, 13]. This is due
to emerging societal concerns [18] and the legal demands of regulatory frameworks such as the EU
General Data Protection Regulation’s “right to explanation” [64], in addition to the more ambiguous
collective apprehension of the public [9, 48, 70]. While much of the field of machine learning
(and much of the public) has rallied around the call for interpretable [33, 55], transparent [36], and
fair algorithms [7] as a solution to mitigate the potential unintended consequences of real world
applications of these systems, little behavioral inquiry [58] has been conducted into what actually
makes an algorithm understandable or if interpretability is even desirable and beneficial [49].

While common in fields like economics, political science, and psychology [59] (as well as industry
practice [4, 21, 38]), traditional computer science and machine learning research has typically not
needed to leverage empirical methods or conduct experiments with human subjects. When these
systems have been evaluated systematically with human subjects, the gold standard for quantify-
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ing the utility of an explanation is some self defined measure of interpretability. This approach
however is fraught with epistemological difficulties since researchers often use different notions of
interpretability, making any systematic comparisons between new XAI systems difficult (if not im-
possible) unless a wholly new human subjects experiment is run [22]. If a researcher attempts to
replicate a previous evaluation, even if the experiment is well documented and published, subtle
confounders—as seemingly innocuous (for machine learning evaluation) as the colors used in the
interface [66, 68]—can result in conclusions that overstate the strength of evidence [42]. The epis-
temological difficulties of measuring interpretability compound with the potential for uncontrolled
experimental confounders, resulting in unreplicable research at best—and pernicious evaluations of
XAI systems at worst.

2 Axiomatic assumptions

While it is unrealistic to systematically evaluate and validate every-single-possible-design-decision
with a rigorous human subjects experiment, often the pendulum swings too far in the opposite direc-
tion with researchers making conveniently favorable interpretability claims about their systems. For
a proper exposition of the more frequent assumptions (and the damage they can do) we refer readers
to Lipton [49]. For the purposes of this paper and our experiment, we focused on the follow three
assumptions as they apply to post-hoc feature attribution explanations [52].

Simpler models are more interpretable. There seems to be a prevailing opinion in the ML com-
munity [67, 69] that simple models (like linear regressions or decision trees) are tautologically1 more
interpretable than complex models (like neural networks). Besides the cheeky fact of the equivalence
between a (very simple) one layer neural network and least squares linear regression, model com-
plexity can often be a misleading proxy of interpretability [22].

Model-agnostic methods are data, task, and user agnostic. By extension of the first assumption,
model-agnostic post-hoc explanation methods [52, 65] implicitly assume that simple explanations
are more interpretable than complex explanations. And as such, a complex model can be made
interpretable with a simple explanation as long as the explainer is verisimilar [61] to the original
model. Other externalities (in the non-economic sense) however can have an outsized effect on a
human’s ability to interpret a model [41, 45].

Any explanation is better than no explanation. One might intuit that a post-hoc explanation
would never lead to a worse decision than one made using the same underlying model absent ex-
planation. Recent research however has shown that not only are XAI methods innocuously fragile
in practice [43, 47], they are also susceptible to adversarial intervention [1, 46, 71]. In additional
to these algorithmic issues, irreducible cognitive factors and intrinsic human biases [23, 31, 32] can
precipitate harmful effects in any algorithmically aided decision making context (explanations or
not).

3 Replication as retrospective

While researchers have identified the need for more consistent measures of fairness [17, 37, 54],
much of the prior empirical XAI research uses different definitions of interpretability, quantified
through disparate proxies [2, 5, 8, 16, 25, 30, 44, 57]. This diversity of measures compounds with
the already well known methodological issues of null hypothesis statistical testing [19, 29, 40] to
create research pathologies [28, 35] that can result in pernicious evaluations of XAI systems and
potentially misleading conclusions.

Experiment design. To efficiently interrogate the above assumptions—while at the same
time evaluating the external validity of previous research findings [62, 65]—we ran a mixed
between/within-subjects repeated measures experiment [56] on Amazon’s Mechanical Turk [53]
with 796 participants. To address the previously stated challenges of rigorously evaluating XAI sys-
tems with human subjects—and to build a methodology that can be used by other researchers in the

1By its nature of being simple, it is interpretable. And since it is interpretable, it is necessarily simple (to
understand).
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Figure 1: An annotated interface for a single trial. The subject was presented with this annotated
interface in the instructions, but each trial was presented with the annotations (in orange) removed.
The precise instructions presented to each subject at the beginning of the experiment along with
the other minutia of conducting the experiment can be found in Appendix A. For this example,
the data is dense and the top 7 features are shown (the explainer cannot be discerned through
the interface alone). Additionally, a demo of the experiment can anonymously be completed at
http://xai.jonathan.industries.

field—we posit that interpretability is not directly measurable. Instead, we use a model grounded in
psychometric theory [74] to infer the subject’s latent ability to interpret from a series of measurable
pairwise comparisons.

To emulate an authentic task and minimize any confounding from differences in domain knowledge,
the experiment presented regression models that predicted the price of Airbnb listings. The underly-
ing black box models were trained with real Airbnb listing data sourced from Inside Airbnb, which
includes various features of the listings (# of bedrooms, number of reviews, review scores, etc.)2. A
single experimental run consisted of ten trials (pairwise comparisons). In each trial, the subject was
presented with explanations of two underlying models and asked to determine which model would
perform more accurately in the real world (Figure 1).

To establish a ground truth for this task, we followed a construction similar to Ribeiro et al. [65]. The
comparisons in the experiment explained two different underlying black box models3 which were
intentionally setup to exhibit a test set accuracy discrepancy (Appendix 5). To consistently introduce
a discrepancy that could plausibly be encountered in a real task, we leveraged the multi-city dataset
of Inside Airbnb to simulate dataset shift.

The underlying black box models for each explainer were trained and validated with either listings
from New York City (NYC) or Los Angeles (LA).4 During training, the amount of regularization
was manipulated to match accuracy for all models within a city (i.e. the ridge and lasso models for
LA had comparable validation accuracy) but to exhibit a validation discrepancy between cities (i.e.
LA models had a higher validation accuracy than NYC models). For the test set accuracy however,
both models were evaluated against the same test set of NYC listings, which led to a discrepancy in
performance (with the LA model predictably performing worse). We consider a response correct if

2Appendix 3 contains a description of the features used in the experiment.
3For the ridge and lasso variants of the explainer factor, the explanation and the model are the same.
4A convenience of the Inside Airbnb data is that the features are consistent across cities.
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Table 1: Experimental factors and levels.

Factor Type Cardinality Levels

Data sparsity Between-subjects 2 sparse, dense
Explainer Between-subjects 4 random, ridge, lasso, SHAP
Top n features Within-subjects 10 1, 3, 5, 7, 9, 11, 13, 15, 17, 19
Item Within-subjects 10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

the subject selected the explanation that corresponded to the underlying model with the higher test
set accuracy (i.e. the explanation for the NYC model).

To avoid the ambiguity of any notion of interpretability and to state the objective of our experiment
precisely: we evaluated the augmentative capabilities of model explanation methods in helping
a human decision maker identify a more accurate machine learning model.

Factors. Our experiment had between-subjects factors of the explanation method used (explainer)
as well as a data sparsity factor (Table 1). We compared one post-hoc feature attribution method
[52] to two “simple” models—ridge (l2) and lasso (l1) regression—commonly believed to be in-
herently interpretable [67], even though such interpretations of the model parameters can falsely
attribute importance [72] (unless appropriate measures are taken [6, 14]). To serve as a control, we
used a fourth condition made up of random feature importances,5 meant to represent a “placebo
explanation”.

For the data sparsity factor, the same underlying data examples were used for the black box model
training (as well as for the explanations). The only difference between the dense variant and sparse
variants are the features used. The dense variant contained 19 numeric features (all of which had val-
ues), whereas the sparse variant included eight additional features (two continuous and six one-hot
encoded categorical). A description of the features used in the experiment, as well as the difference
between the dense and sparse variants can be seen in Appendix 3.

Within-subjects factors of top-n features (as calculated from the explainer importance scores) and
the data instance (item) explained are varied across the ten trials. A summary of the experimental
factors and their levels can be seen in Table 1 and the treatment randomization process is presented
in Appendix 1.

To control for possible confounders due to the visualization of explanations, we presented all ex-
plainers’ feature attributions as identically styled horizontal bar charts (Figure 1). Subjects are
nested within the cross of the between-subjects factors such that each subject only encounters a
single explainer-sparsity combination throughout the experiment.6 To control for the variability
in subjects’ prior knowledge, experience, and any subjective interpretation of the task, each exper-
imental run was composed of ten trials (comparisons) presented in a randomized order (to account
for any learning or ordering effects).

Reproducibility ̸≡ replicability. While we did not reproduce the experiments from [62, 65] ex-
actly, one would hope that we would arrive at similar conclusions from the results of our experiment
(if the prior research’s effects were generalizable and replicable). This really is the essence of the
distinction between replications and reproductions [12, 60]. In this spirit, we invite and encourage
anyone with the will, time, and resources to replicate the experiment presented here.7

4 Disentangling Interpretability8

Uncertainty in human subjects experiments We see a peculiar regularity in the raw results of
the experiment (Table 2), with the random explanation variant having a 54.8% correct response rate
when aggregating across all levels. This is concerning in and of itself, we would expect a number

5For each of top-n random features, we sample importance weights from a symmetric Dirichlet distribution.
6We can think about the cross of these two factors as a single explainer-sparsity factor with eight levels.
7The code to run the experiment can be accessed at https://doi.pizza/challenging-xai.
8We use “disentagle” in the colloquial sense rather than in the representation learning sense [50].
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Table 2: Percent of correct responses for each variant. Right most column is the aggregate percent
correct across both dense and sparse variants. Bottom row is the aggregate percent correct across
explainer variants.

dense sparse

random 49.5 60.2 54.8
ridge 55.1 46.7 50.9
lasso 54.1 54.3 54.2
SHAP 52.6 69.5 61.6

52.7 58.2

much closer to 50% since there is absolutely no information in these explanations. Even more
concerning, when we group by the sparsity of the data, we find that the random explainer on the
dense data resulted in 49.5% correct responses, while on sparse data the percent correct jumps to
60.2%. Across all of our assignments, the order of the black box models is randomized (so we would
not expect any "always choose the left model" effects).

A plausible explanation could be that in the absence of any information in the explanation, the
participant simply chooses the model with the lower displayed error9 (which results in the correct
response in 5/10 examples for the dense variant and 6/10 examples in the sparse variant). These are
a lot of assumptions and speculations however, so a proper experiment is necessary to confirm (or
disconfirm) this mechanic.

A psychometric model of interpretability. To estimate the effect of the various experimental
factors (and disambiguate potentially confounding effects present in the raw percent correct of re-
sponses), we fit a Bayesian multilevel logistic regression model [27] to the subjects’ responses to
the pairwise explanation comparisons. Since the experiment measured subjects’ performance on a
cognitive task, these models alternatively could be viewed as one-parameter item response models
(1PL) with additional item and person covariates [24]. A distinguishing characteristic of item re-
sponse theory (IRT) is its heterogeneous treatment of both persons and items: persons each have a
latent ability parameter (αperson[i]) and items have a latent easiness parameter (βitem[i]).

Pr(yi = 1) = logit−1(αperson[i] + βitem[i] +Xiθ)

In addition to the person and item parameters, our model also included various covariates (experi-
mental factors, interaction terms, and demographic terms) derived from the experimental factors, as
well as demographic data collected in an exit survey (Appendix 6):

Xi = confidence + features + trial + sparsity + explainer +
explainer:confidence + explainer:features + explainer:sparsity + features:sparsity +

education + knowledgecomputer + knowledgedata + experiencecomputer + experiencedata

We fit our models in R [73] using Stan [15] and the brms package [11]. All MCMC chains converged
as judged by visual diagnostics [26] as well as the R̂ convergence diagnostic [10]. The 1PL model
with largest number of considered covariates performed best, as evaluated with LOO cross validation
[75] and posterior predictive checks [26].

Explainer heterogeneity. To investigate the assumption that simpler models are more inter-
pretable, we can look to the estimated parameters for the explainer factor (and its interactions).
We show a subset of the model parameters that are relevant to this assumption in Figure 2 (a). Ev-
erything else being equal, we found that the simplest explainer in our experiment (ridge regression)

9Even though the instructions are explicit about not simply choosing the explanation with the lower error.
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Figure 2: Posterior uncertainty intervals. (a) Subset of model parameters. Thick segment represents
50% interval and thinner outer lines represent 95% intervals. (b) Item easiness parameters (βitem[i]),
only 95% interval is shown. (c) Person ability parameters (αperson[i]) in sorted order, only 95%
interval is shown.

performed best—which corroborates Poursabzi-Sangdeh et al. [62]. But often the context in which
these models are deployed is not as homogenous as a well defined laboratory experiment.

If instead, we consider the interaction between the explainer and the sparsity of the dataset, the
effectiveness of the explainers inverts. On a sparse dataset, the ridge explainer performed the worst
and SHAP performed the best. To more directly contrast with the finding of Poursabzi-Sangdeh et al.
[62] that subjects were able to better simulate the predictions of a model with fewer features, we find
no evidence that the number of features has an effect (E=0.02, 95% CI=[-0.03,0.06]) on a person’s
ability to discern a more accurate model.

While we did not recreate the experiment from Poursabzi-Sangdeh et al. [62] precisely, our study
should be an appropriate test of the generalizability of their findings due to the similarity of our
study population (novices on Mechanical Turk) and the domain of our task (estimating the price
of housing). Our results do not challenge the internal validity of Poursabzi-Sangdeh et al. [62],
but rather probe the external validity of whether model simulatability is an appropriate proxy for
interpretability.

Individual differences. Most prior empirical interpretability work implicitly assumes that every
end user is the same and that the data instances being explained have minimal effect on the inter-
pretability of a model. By directly modeling latent person and item parameters we can begin to
challenge these assumptions. In our 1PL item response model we can estimate these latent param-
eters to differentiate end users (Figure 2 (c)). Since all intra-person variation is subsumed by the
single ability parameter (αperson[i]) however, we cannot make any inferences as to the source of the
variation.10.

Similar to the ability parameter for persons, the easiness parameter for items (βitem[i]) subsumes
all item variation into a single parameter. But unlike αperson[i], item difficulties are much more
discriminative (Figure 2 (b)). The variance in both group-level parameters (sd(person), sd(item))
provides strong evidence to support this user and data heterogeneity to the point of the variation
being dominated by the item parameter. For example, even if we (very conservatively) assume the
lower 95% CI as the correct standard deviation of the item parameters (0.59), this is larger than every
other parameter mean (with the exception of sparse and sparse:ridge)11.

10For our given experiment these latent parameters are likely correlated with a person’s prior knowledge,
experience with data mining, and perhaps other intrinsic personality traits.

11Caution is needed when interpreting this standard deviation however. Since the distribution of βitem[i] is
very not normal, one cannot use the convenient 68–95–99.7 rule.
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5 Limitations

Similar to all the interpretability experiments that came before, our findings have questionable ex-
ternal validity 12, since any universal measure of interpretability is ill-defined. Additionally, the
heterogeneity of data and persons—combined with the large design space of potential methods,
tasks, hyperparameters, etc.—makes any exhaustive evaluation intractable [22].

6 Conclusion.

As a community, we have lost the forest for the trees in our quest for more complex (and novel)
explanation methods. Perhaps to justify more funding (reminiscence of deep learning’s quixotic
quest for MNIST accuracy), we have been chasing benchmarks of proxy measures. Hopefully by
evaluating more systems and approaching technical research with a critical lens [39], we all can
build more usable and humane technology.
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A Experimental protocol

All of the code, data, and parameters used in the experiments can be accessed in the supplemental
materials at https://doi.pizza/challenging-xai.

Instructions
Please read the following instructions and look over the screenshot of the interface that you will be using for the HIT. Once you have finished the
instructions and feel ready to begin, click the Begin HIT button located at the bottom of this page.

For this HIT, you will be presented with a series of 10 examples taken from a dataset of Airbnb listings and the corresponding price per night of the listing.
For each example, two different algorithms have been constructed using this dataset to predict the price per night of a listing using only the features of the
listing (such as the number of bedrooms, the listing reviews and ratings, the amenities offered, etc.). A description of each feature can be found in the data
dictionary.

Your task: For each example, try to determine to the best of your ability which of these two algorithms will perform more accurately in the "real world" on
new listings which have not yet had a price set, and provide an estimate of how confident you are in your choice. Do not rush, but please try to select your
choice promptly once you have decided on the more accurate algorithm. Each example presented will consist of 2 components:

1. The two algorithms' predictions (and error) side-by-side for the same historic listing (which we know the price for).
2. A chart of the features ranked that each algorithm considers important when making its prediction, and the corresponding weight of that importance.

Importance is indicated by the magnitude (absolute value) of the weight: a large positive weight indicating positive correlation between the feature and
price, and a large negative weight indicates a negative correlation with price.

You are free to navigate to these instructions or the data dictionary using the buttons in the upper right of the interface as necessary to determine which
algorithm you think will perform better in the real world. Also, each example may have a different number of important features shown (bars in the bar
chart).

An example of the interface for a single example can be seen below. 

👇

Interface

BEGIN HIT

NOTE: The algorithm with the lower error on the example presented will not necessarily always perform more accurately on listings in the "real
world". You should use your intution about what features might be correlated with higher/lower Airbnb prices when determining your choice.

Figure 3: Instructions presented to subjects at the start of experiment.

(Person)796

Explainer4 Features2

(Item)10

Top n10Explainer ∗ Features8

Observation7960

superscript denotes # of levels
( ) denotes group-level factor13

Figure 4: Hasse diagram of the experimental design, combining the notations of [20, 51].
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Table 3: Dense features. Review scores are scaled from Airbnb’s 5-star rating to a numeric range of
0-10.

# of Bathrooms The number of bathrooms in the listing.

# of Bedrooms The number of bedrooms in the listing.

# of Beds The number of beds (or furniture that could be used as a bed) in the
listing.

Host’s Account Age The age of the host’s Airbnb account in days. This may be older than
the age of the listing itself if the host has created an account before
posting the listing.

Host Listings Count The number of total listings (including the listing shown) that the host
has listed on Airbnb.

Host Response Rate The percentage of new inquiries and reservation requests that the host
has responded to within 24 hours in the past 30 days.

Security Deposit If theres an issue during the stay, the host can report an incident and
submit a claim for some or all of the security deposit within 14 days of
check-out or before a new guest checks in (whichever happens first).

Cleaning Fee One-time fee charged by the host to cover the cost of cleaning their
space.

# of guests included Number of guests included in the listed rental price.

Minimum Nights Required The minimum number of nights a guest is required to book the listing
for.

Maximum Nights Allowed The maximum number of nights a guest is allowed to book the listing
for.

Reviews: Accuracy The average score of reviews from guests about how accurately the
listing page represented the space.

Reviews: Cleanliness The average score of reviews from guests about how clean and tidy
the space was.

Reviews: Check-in The average score of reviews from guests about how smoothly the
check-in went.

Reviews: Communication The average score of reviews from guests about how well the host
communicated with the guest before and during the stay.

Reviews: Location The average score of reviews from guests about they felt about the
neighborhood the listing is located in.

Reviews: Value The average score of reviews from guests about whether they felt the
listing provided good value for its price.

Reviews per Month The average number of reviews a listing receives per month.

Number of Reviews The total number of reviews a listing has received as publicly listed on
Airbnb.
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Table 4: Additional features included in the sparse variant. Categorical columns are one-hot en-
coded.

Description length Number of words in the listing description (as provided by
the host) on Airbnb.com.

Extra guest cost Number of dollars extra charge per each additional guests
more than the # of Guests Included.

Host response time The average amount of time that it took for a host to respond
to all new messages in the past 30 days. One of: within a
day, within an hour, within a few hours, or a few days or
more

Is Superhost Binary indicator of Airbnb Superhost status.

Host has profile picture Binary indicator of whether or not the host has a profile pic-
ture.

Room type The type of room or home for the listing. One of: Entire
place, Private room, or Shared room

Instant bookable Instant Book listings don’t require approval from the host
before they can be booked. Instead, guests can just choose
their travel dates, book, and discuss check-in plans with the
host.

Amenities Amenities available at or included in the listing.

Table 5: Black box model accuracy.

ridge lasso SHAP

validation test validation test validation test

Dense
NYC 0.4497 0.4483 0.4491 0.4497 0.4531 0.6277

LA 0.5899 0.4401 0.5900 0.4387 0.6031 0.4308
Sparse

NYC 0.5645 0.6056 0.5667 0.6086 0.5681 0.6478
LA 0.6446 0.4632 0.6343 0.4610 0.6277 0.2864

Algorithm 1: Assignment randomization

while persons do
explainer ∼ unif{random, ridge, lasso,SHAP}
data ∼ unif{dense, sparse}
for i← 1 to 10 do

item ∼ unif{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} (without replacement)
n ∼ unif{1, 3, 5, 7, 9, 11, 13, 15, 17, 19} (without replacement)

explainer(data[item], n)
end

end
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Table 6: Exit survey

Question Value Choices

What is the highest degree or level of school you
have completed? (If youre currently enrolled in
school, please indicate the highest degree you
have received.)

1 Less than a high school diploma
2 High school degree or equivalent (e.g. GED)
3 Some college, no degree
4 Associate degree (e.g. AA, AS)
5 Bachelors degree (e.g. BA, BS)
6 Some masters education
7 Masters degree (e.g. MA, MS, MEd)
8 Some doctoral education
9 Doctorate (e.g. PhD)
10 Some professional education
11 Professional degree (e.g. MD, JD, DDS)

Have you completed any courses or coursework
(tutorials, workshops, online materials, etc.) that
involve concepts related to Computer Science,
Programming, or Software Engineering?

1 None
2 Completed a tutorial or workshop
3 Some of an online course
4 Completed an online course
5 Completed multiple online courses
6 Some of a university course
7 Completed a university course
8 Completed enough courses for a university

major or minor

Do you have any professional experience with
Computer Science, Programming, or Software
Engineering?

1 None
2 Occasional part-time work
3 Consistent part-time work
4 Less than one year of full-time work
5 1-2 years of full-time work
6 2-4 years of full-time work
7 4-6 years of full-time work
8 More than 6 years of full-time work

Have you completed any courses or coursework
(tutorials, workshops, online materials, etc.) that
involve concepts related to Artificial Intelligence,
Machine Learning, Data Analysis, or Statistics?

1 None
2 Completed a tutorial or workshop
3 Some of an online course
4 Completed an online course
5 Completed multiple online courses
6 Some of a university course
7 Completed a university course
8 Completed enough courses for a university

major or minor

Do you have any professional experience with
Artificial Intelligence, Machine Learning, Data
Analysis, or Statistics?

1 None
2 Occasional part-time work
3 Consistent part-time work
4 Less than one year of full-time work
5 1-2 years of full-time work
6 2-4 years of full-time work
7 4-6 years of full-time work
8 More than 6 years of full-time work
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