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Abstract

Attention is a complex and broad concept, studied across multiple disciplines
spanning artificial intelligence, cognitive science, psychology, neuroscience, and
related fields. Although many of the ideas regarding attention do not significantly
overlap among these fields, there is a common theme of adaptive control of lim-
ited resources. In this work, we review the concept and variants of attention in
artificial neural networks (ANNs). We also discuss the origin of attention from the
neuroscience point of view parallel to that of ANNs. Instead of having seemingly
disconnected dialogues between varied disciplines, we suggest grounding the ideas
on common conceptual frameworks for a systematic analysis of attention and
towards possible unification of ideas in AI and Neuroscience.

1 Introduction

Attention mechanism in artificial neural networks was first proposed for the task of Machine Transla-
tion by Bahdanau et al. (2015) and is now widely applied to various other tasks in natural language
processing and computer vision such as question answering, summarization, document classification,
image captioning, image classification, and others. Simultaneously, attention in biology has been
widely studied to understand the flexibility of controlling limited computational resources in the brain.
In this paper, we propose to study the attention mechanism in neural networks and the human brain.

The basic attention mechanism proposed by Bahdanau et al. (2015) for machine translation works
by learning to align the words in the target language with words in the source language and by
learning a language model for the target language. The target sequence is generated based on the
previous word and a context which is fundamentally a mapping between the words in the source
and the target language. García (2013) show that language interpreters interpret the sentence in one
language and then translate it to the other language, rather than translating on a word-by-word basis.
The language acquisition process in bilinguals studied by Ullman (2015), puts forward a similar
Declarative/Procedural Model in which different types of memories are responsible for learning the
syntax of the two languages and the semantic knowledge about the words and concepts.

The rest of the paper is organized as follows. In Section 2, we review the attention models in
neural networks. The language acquisition process in bilinguals is presented in Section 3. Section 4
describes the attention mechanism in humans from the neuroscience perspective. In Section 5, we try
to ground the parallels between artificial intelligence and neuroscience views of attention using the
conceptual framework of Marr’s levels of analysis.
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2 Attention in Artificial Neural Networks

2.1 Traditional Encoder-Decoder for Language Translation

A basic encoder-decoder framework was proposed by Cho et al. (2014) for translation. The idea
is to use an encoder network to read the input sequence and obtain a fixed representation of the
sentence. Then the decoder network is used to get the output sequence from the previously obtained
vector. A summary vector is generated from the hidden state of the encoder RNN after reading the
whole sentence (detected by end-of-sequence marker) and is considered to contain the important
information content of the input sentence. The structure of the network proposed by Cho et al. (2014)
is as follows:

ht = f(ht−1, yt−1, c), (1)
p(yt|yt−1, yt−2, . . . , y1, c) = g(ht, yt−1, c) (2)

where c is the summary vector and c = ht. The output symbol at time t is predicted from the hidden
state at time t i.e. ht, previously generated output symbol yt−1, and the summary c. The network
structure is presented in Figure 1. However, the performance of basic encoder-decoder approaches
degrades as the length of the sentence increases.
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Figure 1: Basic Encoder-Decoder network
with a single summary vector, image taken
from Cho et al. (2014)
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Figure 2: Attention architecture, image taken
from Bahdanau et al. (2015)

2.2 Basic Attention Mechanism

The attention mechanism was proposed by Bahdanau et al. (2015). It works by trying to align words
in the target and the source language and then translating. In Bahdanau et al. (2015), the encoder
is a bi-directional RNN, and the decoder is an RNN. The probability of generating tth output word
given the previously generated words and the input sequence x, is dependent on the word generated
in the previous step, the hidden state of the decoder at time t i.e. st, and the context vector ct. ct is
generated separately for each target word. Instead of having a single summary for all the output units
as proposed in Cho et al. (2014), a distinct context for each of the outputs is computed dynamically.

p(yt|yt−1, yt−2, . . . , y1, c) = g(yt−1, st, ct) (3)

The alignment model computes scores eij which models how well the inputs at position j match with
the output at position i.

eij = a(si−1, hj) (4)

αij =
exp(eij)∑Tx

k=1 exp(eik)
(5)

a is a simple feed forward network with a single hidden layer and hj is the hidden state of the
bi-directional encoder RNN formed by the concatenation of the forward and the backward hidden
states at step j. As it can be observed from equation 5, the alignment scores are normalized. αij is
the normalized alignment score of the jth input token with the decoder hidden state at (i− 1), with
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respect to all other tokens in the input sequence. It can also be interpreted as the probability that the
ith word is translated from the source word xj during translation of the input sentence.

The context ci, is the weighted sum of all the input hidden states for the ith output token. In fact,
this is the expected hidden state as the αij’s from equation 5 are probability values. In the proposed
model, the next word is dependent on the word generated in the previous step, and the words that
hidden state believes are relevant for generating the next word. The architecture is presented in
Figure 2.

The Alignment model proposed in Bahdanau et al. (2015) is a feed forward MLP. Other variants of
the alignment model are listed in Table 1.

Alignment Type Alignment
Content eij = cosine(si−1, hj)
Location eij = softmax(W, si−1)

Dot Product eij = sTi−1.hj

Scaled Dot Product eij = sTi−1.hj√
(n)

Table 1: Various alignment model schemes

2.3 Attention Variants

We discuss the variants of attention in this subsection. Broadly, categories of attention are:

1. Soft vs Hard Attention: This was first proposed by Xu et al. (2015) for the task of
generating image captions. The encoder is a convolution neural network, used to extract
feature vectors from the image. The decoder is a long short-term memory network, used
to caption the image by generating one word at a time. In Soft Attention, the alignment
weights are placed all over the source image. On the other hand, Hard Attention selects one
patch of the image to attend to at a time.

2. Local vs Global Attention: Luong et al. (2015) proposed Local and Global Attention
for the task of Machine Translation. Global Attention is similar to Soft Attention, and it
considers all hidden states of the encoder when deriving the context. The context ct used
for generating the target word at time step t, is computed as the weighted average over all
the source hidden states. Local Attention, instead of calculating a weighted average over
the all the words, it selectively focus on a small context window. An aligned position pt is
generated for each target word at time t. The context ct is weighted average over [pt - D, pt
+ D]. The authors propose two types of alignment models:

• Monotonic Alignment: It assumes that the source and the target sequences are mono-
tonically aligned roughly. In this, the alignment position pt = t at time step t.

• Predictive Alignment: The aligned position is learnt using a feed forward network. To
favour points near pt, the authors place a gaussian centered at pt with σ = D

2 , during
calculation of the alignment score.

The architecture taken from Luong et al. (2015) is presented in Figure 3.

3. Self Attention: Self Attention is the mechanism to capture different relations between
words at different positions in the same sequence. Multi-head attention computes the
attention multiple times parallely, which helps a model to learn information from multiple
representation subspaces. Multi-head Self Attention is an integral component of transformer
based models, which have been shown to perform very well on various natural language
processing tasks.

4. Hierarchical Attention: Hierarchical Attention was proposed by Yang et al. (2016) to
take into account the hierarchical nature of the data. Yang et al. (2016) propose a two-
level attention mechanism - word-level attention in constructing sentence representations,
and sentence-level attention in constructing document representation. It has been shown
to be useful in document classification, summarization, and information extraction. The
Hierarchical Attention network architecture is presented in Figure 4.

3



Attention Layer

Context vector

Local weights

Aligned position

(a) Local Attention

Global align weights

Attention Layer

Context vector

(b) Global Attention

Figure 3: Local and Global Attention, image taken from Luong et al. (2015)

Figure 4: Hierarchical Attention, image taken from Yang et al. (2016)

3 Language Translation in Human Brain

In a study conducted on early bilinguals, García (2013) show that word translations differ from
sentence translations in human brain. Sentence translation involves syntactic processing and greater
semantic and conceptual analysis demands. Previous studies of the brains of the human language
translators have shown that humans first try to interpret the sentence in the source language and then
translate it to the target language instead of translating on a word-by-word basis.

The Declarative/Procedural (DP) model is proposed in Ullman (2015). The Declarative Memory in
humans is the memory that stores knowledge and facts. It consists of the Semantic and the Episodic
memory. Semantic memory is responsible for the knowledge of words and concepts. Procedural
memory is involved with learning how to perform different actions and skills such as riding a bike,
tying shoe laces etc.

The DP Model states that the Declarative Memory is responsible for storing distinctive knowledge
about both languages in bilinguals. The knowledge of words, their phonological forms, hierarchical
frames, inflectional forms, knowledge of proverbs and idioms of both the languages is stored in the
Declarative Memory. The Procedural Memory is responsible for learning the syntax, especially for
the first language. The learning abilities in procedural memory seem to be established early and
then decline, while declarative memory shows the opposite pattern. However, the second languages’
grammar is more dependent on the declarative memory as it learns faster. Since acquisition also
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depends on the age of the learner, it is likely that the syntax for the second language is acquired by the
Declarative memory due to the decline in the learning abilities of the Procedural memory. Also, since
the second language is exposed at an age later than the first language, the brain is already familiar
with what syntax means.

It can be considered that the context vector proposed in Bahdanau et al. (2015) learns the words
and concepts in the language and a mapping of words in the two languages. This is similar to the
knowledge stored in the Declarative Memory. The sequence-to-sequence architecture is responsible
for learning the syntax, which works similar to the Procedural Memory.

4 Attention in Neuroscience

4.1 Overview of Attention

As the rise of experimental psychology was inevitable, William James, the father of American
psychology, famously declared that “Everyone knows what attention is” but unintentionally, such
informal understanding has directly or indirectly hampered the scientific study of attention, as evident
from Chun et al. (2011). The concept of “Attention” has been studied under many lenses, from
philosophy, psychology, cognitive sciences, neuroscience to computer science. The core ideology
behind attention can be briefly stated as adaptive control of limited “computational” resources
(Lindsay, 2020b), but it could be further generalized to any resources and not just computational.
Although the idea behind the concept is simple, the attempts to rigorously define and unify it from
different angles have proven difficult and thus there has been no global consensus. Therefore the
view that attention is a unitary mechanism has been abandoned and is considered as a characteristic
property of multiple constructs and mechanisms (Chun et al., 2011). This has been true under
psychology, neuroscience, and brain sciences in general, where attention has been studied as one of
the important pillars of their fields.

Although the brain has been viewed as an information processing center where different parts “com-
pute” different aspects of the needs of the living being, attention being one of it, the focus on actually
understanding the algorithm behind has not been very clear. Computer scientists started paying
attention to “attention” very recently and the motivation behind was to improve the performance of
artificial neural networks (Bahdanau et al., 2015). As of now the relationship between the study of
attention from the point of view of brain sciences and its use as a tool to enhance artificial neural
networks is unclear at present. Part of this paper is an attempt to bring light to this relation and justify
whether studying attention from the brain science angle would be fruitful for the computational view
and vice versa.

4.2 Origin of Attention in Brain

The brain can be broadly divided into the cerebrum, the cerebellum, and the brainstem. The neural
circuits underlying attention are primarily believed to be in the brain stem. These neuronal networks
dynamically control the information flow into the thalamus and later onto the cortex (Lindsay, 2020b).
This is known as the attentional bottleneck (Tombu et al., 2011). Although one can localize the
sources of attention in the brainstem networks, its effects are widespread and consist of different
feedback loops. Attention can impact any part of the brain, not limited to the primary sensory areas
and circuits governing emotions. Therefore, one cannot study it as a function of a localized area of
the brain.

We can interpret the attentional networks in terms of sustaining the alert state, directing towards salient
sensory information, and executive control, which resolves the conflict among the competitive parts
of the brain that might be active at the same time (Raz, 2004). The directing network relies heavily on
the parietal systems (part of the cerebral cortex, which primarily processes extrasensory information
like touch, temperature), including the temporal-parietal junction and the superior parietal lobe. It is
involved in both orientations of visual information and stimuli in other modalities (visual cortex and
auditory cortex). The alerting network depends on thalamic areas (part of the forebrain which relays
all sensory and motor signals), locus coeruleus, and other subcortical areas. The executive part of the
attention network depends on the anterior cingulate and lateral areas of the prefrontal cortex (the part
which handles decision-making and executive control of the brain) (Raz, 2004).
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Additionally, diffused neuromodulatory systems play an essential role in the control of general
attention mechanisms. It consists of chemical networks of various neurotransmitters released by
particular neural circuits. For example, neuroscientists suspect that norepinephrine, acetylcholine,
and dopamine modulate alertness, orienting to salient information, and executive control of attention,
respectively (Posner, 2008).

4.3 Types of Attention

Figure 5: A schematic overview of external and internal attention, image taken from Chun et al.
(2011)

4.3.1 External Vs. Internal

Attention can be broadly studied in two halves, although they are inseparable. External attention
mainly refers to the attention applied directly to the sensory streams. It can be applied to raw
sensory information instantaneously or after preprocessing in lower layers of the nervous system. It
develops topological maps for localizing important spatial locations, temporal significance, objects,
and modality-specific features directly from the incoming sensory signals in a bottom-up fashion.
Therefore it’s also known as “Bottom-Up” attention. These maps help in generating saliency for
important aspects of input signals thus allowing to direct the limited resources of the brain in
processing only the salient information (Chun et al., 2011).

Internal attention, unlike the former, is difficult to define in a unified fashion. But it mainly refers
to how the executive functions of the brain command, control, and direct the internal resources
of the cortices. This includes but is not limited to encoding and decoding of long term memories,
managing working memory, task-relevant, and task-irrelevant rules and processing. The higher layers
directly help in modulating the information entering from the lower hierarchy of neural information
processing levels. Thus it’s also known as “Top-Down” attention as it controls the flow of information
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entering the brain in a top-down fashion (Chun et al., 2011). A schematic overview is presented in
Figure 5.

4.3.2 Spatial Vs. Feature

Spatial and Feature Attention can be considered as part of external attention mechanisms. In a broad
sense, Spatial Attention determines how to give importance to spatial locations in the environment
(Chun et al., 2011). This is a key example of the attentional bottleneck problem. It solves this by
using the bottom-up saliency maps obtained from lower sensory layers. Spatial Attention is a core
part of the vision system of the brain, where it helps in deploying fovea through saccadic movements.
But principles of Spatial Attention are also applicable to other modalities in general.

Unlike Spatial Attention, which is about focusing on a particular location of the sensory space, Feature
Attention is global (Lindsay, 2020b). It helps in determining orientation to certain features or objects
that can be captured beyond modality, spatial, and temporal aspects. Features can be considered as
points in dimensions specific to modalities, such as color, temperature, and pitch. Feature Attention
controls and improves the signal processing of feature selective circuits of the cortical regions (Chun
et al., 2011).

5 Towards Unifying Attention in AI and Neuroscience

Deep neural networks (DNNs) are very different from biological neural networks (BNNs). The
electrochemical complexity of BNNs from ion channels to neurotransmitters has been completely
abstracted by DNNs with simple linear and non-linear transformations as evident from Marblestone
et al. (2016). Perhaps the only common theme between both of them is the connectionist ideology.
But the motivation behind them has remained the same, to capture the learning and information
processing abilities of BNNs in a simplistic manner. In general, it’s to reverse engineer the functional
aspects of the computational capabilities of the brain while remaining indifferent to the structural
aspects. Although the functioning of the brain is still a black box (which can be mirrored with the
interpretability issues with deep learning algorithms), neuroscientists have helped us unlock many
mysteries of the brain. Some of them have directly corresponded with the functioning of DNN
architectures. For example, the activations of the deep convolutional neural network have been
determined to be correlated with the neural activity of the visual cortex (Yamins and DiCarlo, 2016).
In fact, CNNs can be studied as a functional model of the vision system of the brain as argued by
Lindsay (2020a).

The dialogues between varied disciplines such as computer science, neuroscience, and cognitive
sciences however lack an interdisciplinary construct for understanding and unifying the common
ideas in these fields. We posit that a conceptual framework for understanding these ideas on a unified
platform is necessary. Early researchers faced a similar challenge during the rise of their respective
fields. And their pioneering solutions can still be used for analyzing modern issues concerning deep
learning and neuroscience as shown in Hamrick and Mohamed (2020).

Conceptual frameworks are mental models that align researchers’ understanding of how their work
and philosophies fit into the larger goals of their field and science more broadly (Hamrick and
Mohamed, 2020). One of the most influential of such models is Marr’s Levels of analysis, introduced
by Marr in 1982 which pioneered the research in cognitive neuroscience. It consists of a three-layer
hierarchy for analyzing computational aspects of the brain’s functionality:

1. Computational level: It describes the goal of a system, its I/O relationship, and possibly if
it can be formulated mathematically.

2. Representational level: It refers to possible representations, algorithms, and data structures
to be used to solve the computational goal.

3. Implementation level: The lowest level is about the actual implementation of the solution
which serves the goal. It could be either physically embedded in hardware, or simulated in
software. At this level, we can ask questions like how a neural circuit in our brain might
represent the data structures or programs using spike codes.

We can see that Marr’s levels are clearly influenced by software and hardware abstraction layers in
computer science as evident from Love (2019). Although Marr’s model is not as detailed as mental
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frameworks used by computer scientists, it’s usefulness lies in the flexibility neuroscientists need. But
one thing is clear that as we go deeper into the levels, more information is introduced regarding bare
computational or information processing requirements whereas as upper levels discusses abstract
concepts which could be manifested in multiple ways for example in vivo or in silico. One way to
analyse attention in general using Marr’s model could be:

1. Computational Level :
• To efficiently determine the most salient of the input signals.
• To dedicate the limited computational resource in most efficient way via the attentional

bottleneck.
2. Representation Level:

• Using Differentiable Programming models. (Innes et al., 2019).
• Using object oriented deep learning (Liao and Poggio, 2017).
• With Memory Augmented Networks (Graves et al., 2016).
• With information rich representations like Probabilistic Graphical Models (Koller and

Friedman, 2009).
3. Implementation Level:

• Brain:
– Spike codes and Population codes mediated by Biological Neural Circuits (Brendel

et al., 2020).
– Reinforcement Learning and Diffused Modulatory Systems in brain (Avery and

Krichmar, 2017).
• Computer:

– To efficiently implement and scale the attention operation in hardware. E.g. On a
CPU, a single GPU, multiple GPUs or TPUs (Abadi et al., 2016).

– Neuromorphic computing with spiking neural networks (SNNs) and Spiking Neural
Processing Units (NPUs) (Schuman et al., 2017).

At the computational level, we formulate the attention mechanism’s goal in general, which is to
determine salient signals via the attentional bottleneck efficiently. To compute attention, process the
input signals so that none of the information rich signals are lost. At the same time, contextually
exclude irrelevant information. Here context recognition will be detrimental for attention as the
saliency of a particular signal directly depends on its context. At the representation level, we back the
differentiable programming models (Innes et al., 2019) as gradient-based learning is state of the art
and highly efficient approach for solving any learning algorithm. However, it is worthwhile exploring
other promising and non-trivial approaches for computing attention like object-oriented deep learning
(Liao and Poggio, 2017). For deploying attention, the algorithm must be able to separate the required
signal from the irrelevant ones. We believe disentangling this information from the input signal
representations (Higgins et al., 2018) will significantly improve this task. At the representation level,
obtaining rich representations of the input signal is also a bottleneck of the current artificial neural
networks. Object-oriented deep learning is one of the recent methods for obtaining disentangled
representations, and hence we suggest the same. At the implementation level, we describe how brains
and computers can compute the same functionality, albeit having a completely different underlying
basis of their respective mechanisms.

Bridging the gap between varied disciplines by placing the ideas on common conceptual grounds will
be the key to solve the problems which none of the disciplines can solve individually. Marr’s levels
of analysis might not be the most suitable or the only such model for grounding interdisciplinary
problems arising in computer sciences and neurosciences. However, such conceptual frameworks
help us in comparing various learning algorithms with constraints arising in neuroscience and also
formalize the areas of disagreement. This could be the way forward towards the systematic unification
and analysis of ideas arising from multiple fields.

6 Conclusion

Attention is a broad concept that is being studied across multiple fields not just limited to AI and
Neuroscience. Although many of the ideas from these different fields do not necessarily intersect
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with each other, there does exist a core commonality of adaptive control of limited resources and the
attentional bottleneck. Instead of having seemingly disconnected dialogues between varied disciplines
we suggest grounding the ideas on common conceptual frameworks like Marr’s levels of analysis
or related mental models. Having a common basis won’t only bring clarity to solving problems
requiring multidisciplinary views but also bring out possible errors in our thought processes while
modeling such problems.
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